
C Programming   Unit - I 

St Joseph’s Degree & PG College   1 

 

Unit - I:  
Introduction to Programming: Problem analysis, Introduction to algorithms, flow charts, structured 
programming and modular programming. 
Overview of C: History of C, Importance of C, Basic Structure of C program, Writing and Executing a C 
Program. Constants, Variables and Data types, Input/output statements, Operators and Expressions. 

 
1. Introduction 

A computer is a very powerful and versatile machine capable of performing a multitude of 

different tasks, yet it has no intelligence or thinking power. The intelligence Quotient (I.Q) of a 

computer is zero. A computer performs many tasks exactly in the same manner as it is told to do. This 

places responsibility on the user to instruct the computer in a correct and precise manner, so that the 

machine is able to perform the required job in a proper way. A wrong or ambiguous instruction may 

sometimes prove disastrous.  

In order to instruct a computer correctly, the user must have clear understanding of the 

problem to be solved. A part from this he should be able to develop a method, in the form of series of 

sequential steps, to solve it. Once the problem is well-defined and a method of solving it is developed, 

then instructing the computer to solve the problem becomes relatively easier task. 

 

 Thus, before attempt to write a computer program to solve a given problem. It is necessary to 

formulate or define the problem in a precise manner. Once the problem is defined, the steps required 

to solve it, must be stated clearly in the required order. 

 

Operating Systems 

The set of instructions which resides in the computer and governs the system are called 

operating systems, without which the machine will never function. They are the medium of 

communication between a computer and the user. DOS, Windows, Linux, UNIX etc. are Operating 

Systems. 

 

Computer Languages 

They are of three types – 

• Machine language (Low level language) 



C Programming   Unit - I 

St Joseph’s Degree & PG College   2 

 

• Assembly language  

• User Oriented language (Higher level language) 

 

Machine language depends on the hard ware and comprises of 0 and 1. This is tough to write as one 

must know the internal structure of the computer. At the same time assembly language makes use of 

English like words and symbols. With the help of special programs called Assembler, assembly language 

is converted to machine oriented language. Here also a programmer faces practical difficulties. To 

overcome this hurdles user depends on higher level languages, which are far easier to learn and use. 

To write programs in higher level language, programmer need not know the characteristics of a 

computer. Here he uses English alphabets, numerals and some special characters.  

Some of the higher level languages are FORTRAN, BASIC, COBOL, PASCAL, C, C++, ADA etc. We 

use C to write programs. Note that higher level languages cannot directly be followed by a computer. It 

requires the help of certain software to convert it into machine coded instructions. This software is 

called Compiler, Interpreter, and Assembler. The major difference between a compiler and an 

interpreter is that compiler compiles the user’s program into machine coded by reading the whole 

program at a stretch where as Interpreter translates the program by reading it line by line. 

 

Problem Analysis & Solving: 

It can be said that whatever activity a human being or machine do for achieving a specified objective 

comes under problem solving. To make it more clear, let us see some other examples. 

 

Example1: If you are watching a news channel on your TV and you want to change it to a sports 

channel, you need to do something i.e. move to that channel by pressing that channel number on 

your remote. This is a kind of problem solving. 

Example 2: One Monday morning, a student is ready to go to school but yet he/she has not picked 

up those books and copies which are required as per timetable. So here picking up books and copies 

as per timetable is a kind of problem solving. 
 
Example 3: Some students in a class plan to go on picnic and decide to share the expenses among 

them. So calculating total expenses and the amount an individual has to give for picnic is also a kind of 

problem solving. 

 



C Programming   Unit - I 

St Joseph’s Degree & PG College   3 

 

Now, broadly we can say that problem is a kind of barrier to achieve something and problem solving 

is a process to get that barrier removed by performing some sequence of activities. A computer 

cannot solve a problem on its own. One has to provide step by step solutions of the problem to the 

computer. In fact, the task of problem solving is not that of the computer. It is the programmer who 

has to write down the solution to the problem in terms of simple operations which the computer can 

understand and execute. In order to solve a problem by the computer, one has to pass though 

certain stages or steps. They are:  

1. Understanding the problem. 

2. Analyzing the problem. 

3. Developing the solution. 

4. Coding and implementation. 

 

1. Understanding the problem: Here we try to understand the problem to be solved in totally. Before 

with the next stage or step, we should be absolutely sure about the objectives of the given problem. 

2. Analyzing the problem: After understanding thoroughly the problem to be solved, we look different 

ways of solving the problem and evaluate each of these methods. The idea here is to search an 

appropriate solution to the problem under consideration. The end result of this stage is a broad 

overview of the sequence of operations that are to be carries out to solve the given problem. 

3. Developing the solution: Here the overview of the sequence of operations that was the result of 

analysis stage is expanded to form a detailed step by step solution to the problem under consideration. 

4. Coding and implementation: The last stage of the problem solving is the conversion of the detailed 

sequence of operations in to a language that the computer can understand. Here each step is 

converted to its equivalent instruction or instructions in the computer language that has been chosen 

for the implantation. 

 

Algorithm & Flowchart: 

Algorithm and flowchart are the powerful tools for learning programming. An algorithm is a step-by-

step analysis of the process, while a flowchart explains the steps of a program in a graphical way. 

Algorithm and flowcharts helps to clarify all the steps for solving the problem. 

 

Algorithm 



C Programming   Unit - I 

St Joseph’s Degree & PG College   4 

 

The word “algorithm” relates to the name of the mathematician Al-khowarizmi, which means a 

procedure or a technique. Software Engineer commonly uses an algorithm for planning and solving the 

problems. An algorithm is a sequence of steps to solve a particular problem or algorithm is an ordered 

set of unambiguous steps that produces a result and terminates in a finite time. In other words, a set 

of sequential steps usually written in Ordinary Language to solve a given problem is called Algorithm. 

 

It may be possible to solve to problem in more than one ways, resulting in more than one 

algorithm. The choice of various algorithms depends on the factors like reliability, accuracy and easy to 

modify. The most important factor in the choice of algorithm is the time requirement to execute it, 

after writing code in High-level language with the help of a computer. The algorithm which will need 

the least time when executed is considered the best. 

 

Steps involved in algorithm development 

An algorithm can be defined as “a complete, unambiguous, finite number of logical steps for 

solving a specific problem “ 

 

Step1- Define input: For an algorithm, there are quantities to be supplied called input and these are 

fed externally. The input is to be identified first for any specified problem. 

Step2- Outline the algorithm operations: All the calculations to be performed in order to lead to 

output from the input are to be identified in an orderly manner.  

Step3- Process the finiteness, definiteness and Effectiveness of algorithm: If we go through the 

algorithm, then for all cases, the algorithm should terminate after a finite number of steps. 

Step4-Define output: From an algorithm, at least one quantity is produced, called for any                                                                              

specified problem  

 

Properties of an Algorithm: 

1. Finiteness: An algorithm must always terminate after a finite number of steps. It means after every 

step one reach closer to solution of the problem and after a finite number of steps algorithm 

reaches to an end point. 



C Programming   Unit - I 

St Joseph’s Degree & PG College   5 

 

2. Definiteness: Each step of an algorithm must be precisely defined. It is done by well thought 

actions to be performed at each step of the algorithm. Also the actions are defined unambiguously 

for each activity in the algorithm. 

3. Input: Any operation you perform need some beginning value/quantities associated with different 

activities in the operation. So the value/quantities are given to the algorithm before it begins. 

4. Output: One always expects output/result (expected value/quantities) in terms of output from an 

algorithm. The result may be obtained at different stages of the algorithm. If some result is from 

the intermediate stage of the operation, then it is known as intermediate result and result obtained 

at the end of algorithm is known as end result. The output is expected value/quantities always have 

a specified relation to the inputs. 

5. Effectiveness: Algorithms to be developed/written using basic operations. Actually operations 

should be basic, so that even they can in principle be done exactly and in a finite amount of time by 

a person, by using paper and pencil only. 

Any algorithm should have all these five properties otherwise it will not fulfill the basic objective of 

solving a problem in finite time. As you have seen in previous examples, every step of an algorithm 

puts you closer to the solution. 

 

Example 

1. Suppose we want to find the average of three numbers, the algorithm is as follows 

Step 1: Read the numbers a, b, c 

Step 2: Compute the sum of a, b and c 

Step 3: Divide the sum by 3 

Step 4: Store the result in variable d 

Step 5: Print the value of d 

Step 6: End of the program 

2. Write an algorithm to calculate the simple interest using the formula Simple interest = P*N* R/100. 

Where P is principle Amount, N is the number of years and R is the rate of interest. 

Step 1: Read the three input quantities’ P, N and R. 

Step 2: Calculate simple interest as Simple interest = P* N* R/100 



C Programming   Unit - I 

St Joseph’s Degree & PG College   6 

 

Step 3: Print simple interest. 

Step 4: Stop. 

 

Advantages of algorithm: 
➢ It is a step-wise representation of a solution to a given problem, which makes it easy to 

understand. 

➢ An algorithm uses a definite procedure. 

➢ It is not dependent on any programming language, so it is easy to understand for anyone even 

without programming knowledge. 

➢ Every step in an algorithm has its own logical sequence so it is easy to debug. 

 

Flowchart 

The first design of flowchart goes back to 1945 which was designed by John von Neumann. 

Unlike an algorithm, Flowchart uses different symbols to design a solution to a problem. It is another 

commonly used programming tool. By looking at a Flowchart one can understand the operations and 

sequence of operations performed in a system. Flowchart is often considered as a blueprint of a design 

used for solving a specific problem. 

A flow chart is a step by step diagrammatic representation of the logic paths to solve a given 

problem or A flowchart is visual or graphical representation of an algorithm. The flowcharts are pictorial 

representation of the methods to be used to solve a given problem and help a great deal to analyze the 

problem and plan its solution in a systematic and orderly manner. A flowchart when translated in to a 

proper computer language, results in a complete program. 

 

Advantages of Flowcharts 

1. The flowchart shows the logic of a problem displayed in pictorial fashion which felicitates easier 

checking of an algorithm. 

2. The Flowchart is good means of communication to other users. It is also a compact means of 

recording an algorithm solution to a problem. 

3. The flowchart allows the problem solver to break the problem into parts. These parts can be 

connected to make master chart. 



C Programming   Unit - I 

St Joseph’s Degree & PG College   7 

 

4. The flowchart is a permanent record of the solution which can be consulted at a later time. 

  

Symbols used in Flow-Charts: 

 The symbols that we make use while drawing flowcharts as given below are as per conventions 

followed by International Standard Organization (ISO). 

a. Oval: Rectangle with rounded sides is used to indicate either START/STOP of the program. 

             

 

b. Input and output indicators: Parallelograms are used to represent input and output operations. 

Statements like INPUT, READ and PRINT are represented in these Parallelograms.  

 

 

 

c.  Process Indicators: - Rectangle is used to indicate any set of processing operation such as for   

storing arithmetic operations. 

 

d. Decision Makers: The diamond is used for indicating the step of decision making and therefore 

known as decision box. Decision boxes are used to test the conditions or ask questions and 

depending upon the answers, the appropriate actions are taken by the computer. The decision 

box symbol is                                                     

                                                           

 

                                                             

e. Flow Lines: Flow lines indicate the direction being followed in the flowchart. In a Flowchart, 

every    

line must have an arrow on it to indicate the direction. The arrows may be in any direction 

    

 



C Programming   Unit - I 

St Joseph’s Degree & PG College   8 

 

 

 

 

f. On- Page connectors: Circles are used to join the different parts of a flowchart and these circles 

are                        

      called on-page connectors. The uses of these connectors give a neat shape to the flowcharts. In 

a      

      complicated problems, a flowchart may run in to several pages. The parts of the flowchart on    

     different pages are to be joined with each other. The parts to be joined are indicated by the 

circle. 

                                                                     

                                                                     

 

g. Off-page connectors: This connector represents a break in the path of flowchart which is too 

large to fit on a single page. It is similar to on-page connector. The connector symbol marks 

where the algorithm ends on the first page and where it continues on the second. 

 

                                         

 

 

Example: Consider a problem of multiplying two numbers 

Algorithm 

Step1: Input numbers as a and b. 

Step2: Find the product of a and b. 

Step3: Print the result. 



C Programming   Unit - I 

St Joseph’s Degree & PG College   9 

 

 

 

Example: flowchart to find the biggest of three numbers 

 
 

 



C Programming   Unit - I 

St Joseph’s Degree & PG College   10 

 

Differences between Algorithm and Flowchart 

Algorithm 

1. A method of representing the step-by-step 

logical procedure for solving a problem. 

2. It contains step-by-step English descriptions, 

each step representing a particular operation 

leading to solution of problem. 

3. These are particularly useful for small 

problems. 

4. For complex programs, algorithms prove to 

be Inadequate. 

Flowchart 

1. Flowchart is diagrammatic representation of 

an algorithm. It is constructed using different 

types of boxes and symbols. 

2. The flowchart employs a series of blocks and 

arrows, each of which represents a particular 

step in an algorithm. 

3. These are useful for detailed representations 

of complicated programs.  

4. For complex programs, Flowcharts prove to 

be adequate 

 
 

 

Structured programming & Modular Programming:  

➡️Modular programming means separating your programs into separate functional units 

(modules). Each module does a well-defined task and the modules are called by one-another as 

needed. Typically, the state of each module is encapsulated and only supposed to be altered by the 

functions from that module. 

➡️Structured programming is a technique where you use subprograms (functions) and control-

structures (like if-statements or loops) to structure the control-flow of your programs instead of doing 

so by liberal use of go to. If you learn programming today, you won't ever have learned how to write 

unstructured programs. 

 

Structured programming: 

➢ Structured programming is a subset of procedural programming that enforces a logical structure on 

the program being written to make it more efficient and easier to understand and modify. Certain 



C Programming   Unit - I 

St Joseph’s Degree & PG College   11 

 

languages such as Ada, Pascal, and dBASE are designed with features that encourage or enforce a 

logical program structure. 

➢ Structured programming frequently employs a top-down design model, in which developers map 

out the overall program structure into separate subsections. A defined function or set of similar 

functions is coded in a separate module or submodule, which means that code can be loaded 

into memory more efficiently and that modules can be reused in other programs. After a module 

has been tested individually, it is then integrated with other modules into the overall program 

structure.  

➢ Almost any language can use structured programming techniques to avoid common pitfalls of 

unstructured languages.  

➢ Unstructured programming must rely upon the discipline of the developer to avoid structural 

problems, and as a consequence may result in poorly organized programs.  

➢ Most modern procedural languages include features that encourage structured programming. 

Object-oriented programming (OOP) can be thought of as a type of structured programming, uses 

structured programming techniques for program flow, and adds more structure for data to the 

model. 

 

Modular Programming: 

➢ Modular programming is the process of subdividing a computer program into separate sub-

programs (Modules).  

➢ A module is a separate software component. It can often be used in a variety of applications and 

functions with other components of the system. Similar functions are grouped in the same unit of 

programming code and separate functions are developed as separate units of code so that the 

code can be reused by other applications. 

➢ Modules in modular programming enforce logical boundaries between components and improve 

maintainability. They are incorporated through interfaces. They are designed in such a way as to 

minimize dependencies between different modules. Teams can develop modules separately and do 

not require knowledge of all modules in the system. 

http://whatis.techtarget.com/definition/Ada
http://searchenterpriselinux.techtarget.com/definition/Pascal
http://searchmobilecomputing.techtarget.com/definition/memory
http://searchsoa.techtarget.com/definition/object-oriented-programming


C Programming   Unit - I 

St Joseph’s Degree & PG College   12 

 

➢ Each and every modular application has a version number associated with it. This provides 

developers flexibility in module maintenance. If any changes have to be applied to a module, only 

the affected subroutines have to be changed. This makes the program easier to read and 

understand. 

➢ Modular programming has a main module and many auxiliary modules. The main module is 

compiled as an executable (EXE), which calls the auxiliary module functions. Auxiliary modules exist 

as separate executable files, which load when the main EXE runs. Each module has a unique name 

assigned in the PROGRAM statement. Function names across modules should be unique for easy 

access if functions used by the main module must be exported 

➢ Languages that support the module concept are IBM Assembler, COBOL, RPG, FORTRAN, Morpho, 

Zonnon and Erlang, among others.  

Difference between Structured programming and Modular programming 

Modular programming means separating your programs into separate functional units (modules). 

Each module does a well-defined task and the modules are called by one-another as needed. Typically, 

the state of each module is encapsulated and only supposed to be altered by the functions from that 

module. 

On the other hand, structured programming is a technique where you use subprograms (functions) 

and control-structures (like if-statements or loops) to structure the control-flow of your programs 

instead of doing so by liberal use of go to. If you learn programming today, you won't ever have 

learned how to write unstructured programs. 

 
Introduction to C: -  
 

C is a programming language developed at AT & T’s Bell laboratories of USA in 1972, it was 

designed and developed by “Dennis Ritchie”. C was evolved from ALGOL, BCPL and B, and it uses many 

concepts from these languages and added the concept of data type s and other powerful features. 

https://www.reddit.com/r/computerscience/comments/3asdvy/difference_between_structured_programming_and/


C Programming   Unit - I 

St Joseph’s Degree & PG College   13 

 

Since it was developed along with the UNIX operating system, it is strongly associated with UNIX. The 

UNIX operating system was also developed at Bell Laboratories was coded almost entirely in C.  

 

The various stages in evolution of C language are as follows: 
 

Year Language Developed By Remarks 
 

1960 
 
 
1963 
 
 
1967 
 
 
1970 
 
 
1972 
 
 
 

 
ALGOL 
 
 
CPL 
 
 
BCPL 
 
 
B 
 
 
C 

 
International Committee 
 
 
Cambridge University 
 
 
Martin Richards at Cambridge University 
  
 
Ken Thompson at AT & t Bell Labs 
 
 
Dennis Ritchie at AT & T bell labs 
 

 
too general, too abstract 
 
 
Hard to learn, difficult to 
implement 
 
Too specific 
 
 
Too specific 
 
 
General purpose 
structured programming 
language. 

 

  
Features of C Language: C is the widely used language. Below are some of the Features of C 

Programming 

1. Low Level Features: 

• C Programming provides low level features that are generally provided by the Lower level 

languages. C is Closely Related to Lower Level Language such as “Assembly Language “. 

• It is easier to write assembly language codes in C programming. 

2. Portability: 

• C Programs are portable i.e they can be run on any Compiler with Little or no Modification 

• Compiler and Preprocessor make it Possible for C Program to run it on Different PC 

3. Powerful 

• Provides Wide verity of ‘Data Types ‘ 

• Provides Wide verity of ‘Functions’ 

http://www.c4learn.com/c-programming/low-level-language/
http://c4learn.com/c-programs/mixing-inline-assembly-program-in-c.html


C Programming   Unit - I 

St Joseph’s Degree & PG College   14 

 

• Provides useful Control & Loop Control Statements 

4. Bit Manipulation: 

• C Programs can be manipulated using bits. We can perform different operations at bit level. We 

can manage memory representation at bit level. (Eg. We can use Structure to manage Memory 

at Bit Level) 

• It provides wide verity of bit manipulation Operators. We have bitwise operators to manage 

Data at bit level. 

5. High Level Features: 

• It is more User friendly as compare to previous languages. Previous languages such as BCPL, 

Pascal and other programming languages never provide such great features to manage data. 

• Previous languages have their pros and cons but C Programming collected all useful features of 

previous languages thus C become more effective language. 

6. Modular programming is a software design technique that increases the extent to which software is 

composed of separate parts, called modules. C Program Consist of Different Modules that are 

integrated together to form complete program 

7. Efficient Use of Pointers:  Pointers has direct access to memory. C Supports efficient use of pointer. 

8. It is a robust language with rich set of built-in functions and operators that can be used to write 

any complex program. 

9. Programs Written in C are efficient and fast. This is due to its variety of data type and powerful 

operators and It is loosely-typed language. 

10. Another important feature of C program is its ability to extend itself. A C program is basically a 

collection of functions that are supported by C library. We can also create our own function and 

add it to C library. 

 

Importance of ‘C’ language: 

C language is a famous programming language due to its qualities. Some qualities are: 

1. It is robust language whose rich setup of built in functions and operator can be used to write any 

complex program. 

http://www.c4learn.com/c-programming/c-structure-bit-manipulation/
http://www.c4learn.com/c-programming/c-structure-bit-manipulation/


C Programming   Unit - I 

St Joseph’s Degree & PG College   15 

 

2. Program written in C are efficient due to several variety of data types and powerful operators. 

3. The C compiler combines the capabilities of an assembly language with the feature of high level 

language. Therefore, it is well suited for writing both system software and business package. 

4. There are only 32 keywords; several standard functions are available which can be used for 

developing program. 

5. C is portable language; this means that C programs written for one computer system can be run on 

another system, with little or no modification. 

6. C language is well suited for structured programming; this requires user to think of a problem in 

terms of function or modules or block. A collection of these modules make a program debugging 

and testing easier. 

7. C language has its ability to extend itself. A c program is basically a collection of functions that are 

supported by the C library. We can continuously add our own functions to the library with the 

availability of the large number of functions. 

8. C is a free-form language; we can group statements together in one line.  
 
 

Structure of C Program: - C program can be viewed as a group of building blocks called functions. 

A function is a subroutine that may include one or more statements designed to perform a specific 
task. To write a C program, we first create functions and then put them together. A C program may 
contain one or more sections. 
 

Documentation section 
Link Section 
Definition Section 
Global declaration Section 
main ( ) function section 
{ 
 Declaration part; 
 Executable part 
} 
Sub-programming section 
 
Function -1 
Function-2 
:     User-defined functions 
: 



C Programming   Unit - I 

St Joseph’s Degree & PG College   16 

 

Function -n 

  
Documentation section: - It provides the details about the program like name of the program, author 
name, date when it is created and when it is modified. This section consists of a set of comment lines 
to provide all these details. 
Comments are two types: i. single line comments ii. Multi-line comments 
Single line comment: It is supported by the symbol //. The starting of the comment is with the symbol 
//. 
Multi-line comment: This is used the symbol /* and */. The starting of the comment is with /* and 
ending with */. 
Eg:  // PROGRAM FOR ADDITION OF TWO NUMBERS Single line comment 
 
      /* PROGRAM FOR ADDITION     Multi-line comment 
   TWO NUMBERS */ 
Linking Section: - It provides instructions to the compiler to link the specified files from the standard C 
library. It is accomplished by the pre-processor directive:  #include <file name> 
 
Eg: #include <stdio.h> 
 
Definition Section: - this section defines all symbolic constants and macros by using a compiler 
directive #define. Symbolic constants appear in capital letters, and these are the values which don’t 
change during the execution of the program.  
Eg: #define   PI 3.14 
Global declaration Section: - In this section we can declare some variables that are used in more than 
one function. Such variables are called as global variables. It also declares the user-defined functions. 
Global declaration is outside of all the functions. 
Eg: int a, b;    where a, b are global variables 
 int add(int, int ); add function declaration or prototyping of add function. 
 
main( ) function:- Every C program must contain at least one function , and that should be the main( ) 
function. If a program contain more functions, then one of those functions should be the main( ) 
function. Main( ) function consists of two parts: 
Declaration part: Declaration part declares all the variables and user-defined functions which are used 
in executable part. 
Executable part: There is at least one statement in executable part. And it consists of the statements 
which are towards the solution of the given program. 
 

These two parts must appear in between opening brace ({ ) and closing brace ( } ) of the main ( ) 

function section. Always program execution begins at the opening brace {and ends at the closing 

brace} of the main ( ) function. 
 
Sub-program section: - The sub-program section contains all user defined functions that are called in 
the main function.  



C Programming   Unit - I 

St Joseph’s Degree & PG College   17 

 

 
 All sections, except the main ( ) function section, may be absent when they are not required. 

 

Example1:  program for finding the area of a circle. 
 
// PROGRAM FOR FINDING THE AREA OF A CIRCLE   Documentation section 
#include <stdio.h>      Link section 
#include <conio.h>     
#define  PI  3.14     definition section(symbolic constant) 
void main( )       main ( ) function section 
{  
 float r, area;      Declaration part 
  

clrscr( ); 
printf(“Enter radius “); 
scanf(“%f”, &r); 
area = PI * r * r;    Executable part 
printf(“ Area = %f”, area): 
 
getch( ); 

} 

 
Here in this example program, it doesn’t have global declaration section and sub-program section. 
These are optional, based on the user requirement one can use these sections, but main function is 
must. The actual execution of the program starts from the main function only. 
   

Example 2: Displaying Hello World 
 
#include <stdio.h> 
int main() 
{ 
   /* printf function displays the content that is 
    * passed between the double quotes. 
    */ 
   printf("Hello World"); 
   return 0; 
} 
Output: 

Hello World 

 

Writing Executing a C Program:    Step by Step Execution of C Program 



C Programming   Unit - I 

St Joseph’s Degree & PG College   18 

 

Step 1: Edit  

1. This is First Step i.e Creating and Editing Program. 

2. First Write C Program using Text Editor, such as Turbo C++, Borland C/C++ 3.0, Notepad++ etc. 

3. Save Program by using .C Extension. Ex: sample.c 

4. File Saved with .C extension is called “Source Program “. 

Step 2: Compiling source code (Alt + F9) 

1. For compiling source program, we use Alt + F9 command. Whenever we press Alt + F9, the source 

file is going to be submitted to the Compiler.  

2. On receiving a source file, the compiler first checks for the Errors.  

  
3. If there are any Errors then compiler returns List of Errors, if there are no errors then the source 

code is converted into object code and stores it as file with .obj extension.  

4. Then the object code is given to the Linker. The Linker combines both the object code and 

specified header file code and generates an Executable file with .exe extension. 

Step 3: Executing/Running the file (Ctrl + F9) 

1. After completing compilation successfully, an executable file is created with .exe extension. The 

processor can understand this .exe file content so that it can perform the task specified in the source 

file. 

2. We use a shortcut key Ctrl + F9 to run a C program.  

3. Whenever we press Ctrl + F9, the .exe file is submitted to the CPU. On receiving .exe 

file, CPU performs the task according to the instruction written in the file. The result generated from 

the execution is placed in a window called User Screen. 

Step 4: Checking Results (Alt + F5) 

After running the program, the result is placed into User Screen. Just we need to open the User Screen 

to check the result of the program execution. We use the shortcut key Alt + F5 to open the User Screen 

and check the result.  

The following diagram illustrates the compilation and execution process of a C program 



C Programming   Unit - I 

St Joseph’s Degree & PG College   19 

 

 

The file which contains c program instructions in high level language is said to be source code. Every 
c program is a source file. 

 
C Character Set: - 

Like any other language, C has its own vocabulary and grammar. The characters in C are 
grouped into the following categories. 
1. Letters. 
2. Digits. 
3. Special Symbols. 
4. White Spaces. 
 
Letters:   Uppercase letters    : A-Z 

Lowercase letter       :   a-z 
Digits:    All Decimal digits       0-9 
Special Symbols:    There are so many special symbols, some of them are: 
 
$-Dollar Sign   (-Left Parenthesis 
%-Percent   )-Right Parenthesis 
^-caret    [-Left Bracket 
*-asterisk   {-Right Brace. 
#-numeric sign 
 
White Spaces: Blank Space, New Line (\n), Horizontal tab (\t), Form feed, Carriage return etc are white 
space characters. White spaces may be used to separate words, but are prohibited between characters 
if keywords and identifiers. 
 

C Tokens: - 



C Programming   Unit - I 

St Joseph’s Degree & PG College   20 

 

In a Passage of text, individual words and punctuation marks are called as tokens. 
In a C program, the smallest individual units are known as C tokens. The following are different 
categories of C tokens. 
 
1) Keywords      2) constants  3) Identifiers      4) Operators. 
 

1) Keywords: Every C word is classified as either a keyword or an identifier Keywords are also called 

as Reserved Words, which are having fixed meaning and these meanings cannot be changed. Keywords 
are used as basic building blocks for program Statements. All keywords must be written in lowercase 
letters. ANSI C supports 32 keywords. 
Eg: auto, break, double, for, int, short, void, static, volatile, switch, while, union etc. are some 
keywords. 
 

2) Constants: Constant refers to a fixed value that does not change during the execution of a 

program .C language support several types of constants. 
1) Numeric constants        2) Character constants. 
 
1) Numeric constants: The quantity which can be expressed in numbers is numeric constant. 
Eg:  123, -86, 3.14, 238.42 
 
Numeric constants are expressed in two types. 

i) Integer constants: It refers to a sequence of digits. There are three types of integers. 

 
a) Decimal Integers: consists of a set of digits 0 through 9, preceded by an optional + or – 
 Eg:   823,28, -32486, +5. 
NOTE:  Spaces, commas and non-digit characters are not permitted between digits. 
  Eg:     Rs 1000, $1000,25,538, are invalid. 
b) Octal Integers: These are any combination of digits from the set 0 through 7, with a leading 0. 
  Eg:   037,0,0435. 
c) HexaDecimal Integers:  sequence of digits preceded by ox or OX from the set 0 through 9 and a 
through f. 
   eg:    0X5,0XAB, ox5D, ox28f. 
 
NOTE: We rarely use octal and hexadecimal numbers in programming. 
 

ii) Real Constants: The quantities, such as distances, heights, temperatures, prices and so on, are 

represented by numbers containing fractional parts. Such number are called real (or floating point) 
constants. 
  Eg: 0.75, +28.923, 128, 0.5. 
Real constants are represented by using: 
a) Decimal Notation b) Scientific Notation (Exponential Notation) 
Decimal Notation: This notation is in the form of whole number followed by a decimal point and the 
fractional part. It is possible to omit digits before the decimal point or digits after the decimal point. 



C Programming   Unit - I 

St Joseph’s Degree & PG College   21 

 

Scientific Notation: A real Number may also be expressed in exponential Notation. It is in the form: 
    Mantissa  e   exponent. 
 
Eg: The value 215.65 may be written as 2.1565e2 in exponential notation.e2 means multiply by 10². 
  0.65e4, 12e2,-1.2E-3,1.5e+3. 
 

2) Character constant:  Sometimes, the quantities which are expressed in characters. These are 2 

types. 
i) Single character constants: It contains a single character enclosed within a pair of single quote 
marks. 
   Eg:   ‘s’,’x’,’M’,’;” 
Character constants have integer values known as ASCII values (ASCII-American Standard code for 
Information Interchange). Since each character represents an integer value, it is also possible to 
perform arithmetic operations on character constants. 
 
ii) String constants: A String constant is a sequence of characters enclosed in double quotes. The 
characters may be letters, numbers, special characters and blank spaces. 
   Eg:   “Hello”,”AZAD”,”58”,   “$ABC”,  “x” 
 
NOTE: The character constant ‘X’ is not equivalent to the string constant “X” 
 

Backslash Character constants/Escape Sequences: C supports some special backslash 

character constants that are used in output functions. These are also known as escape sequences. 
 
‘\a’- audible alert(bell)  ‘\v’- vertical tab 
‘\b’- backspace.   ‘\’’- single quote. 
‘\f’- form feed    ‘\”’- double quote. 
‘\n’- new line    ‘\?’- question mark 
‘\r’- carriage return   ‘\0’- Null 
 

  
3) Identifiers: Identifiers refers to the names of variables, functions and arrays. These are user-

defined names are consisting of a sequence of letters & digits. Identifier is a user defined name of an 
entity to identify it uniquely during the program execution. It is a collection of characters which acts 
as name of variable, function, array, pointer, structure, label etc... In other words, an identifier can be 
defined as user defined name to identify an entity uniquely in c programming language that name may 
be of variable name, function name, array name, pointer name, structure name or a label. 
 

Variables: Variable is an identifier. A Variable is a data name that may be used to store a data value. 

A variable may take different values at different times during execution, means the value of a variable 
may vary (change) during the execution. 
       Variable names may consist of letters, digits and under score (_) character. At the time of variables 
or identifiers, some rules are to be followed. 



C Programming   Unit - I 

St Joseph’s Degree & PG College   22 

 

 

• First character must be an alphabet or underscore. 

• ANSI standard recognizes a length of variable name is up to 31 characters. However, length should 
not be normally more than 8 characters. 

• Keywords are not allowed to take as variable name or identifier name.  

• White Space is not allowed. 
 
Eg: A         123 
 Abc          $abc  Invalid  
 xy                Valid variable        int   Names. 

distance                  names                  10th 
 count          add num 
 sum10           #2 
 even_count 
 
Declaration of variables: A variable can be used to store value of any data type. The declaration of 
variables must be done before they are used in the program. 
Syntax:  data type variable, variable2, variable3 …. variable n 
 Variables are separated by commas and declaration statement ends with a semicolon. 
 Eg: int x, y, z; 
 Float f1, f2; 
 Double p, q, r; 
 Char ch; 
 
Assigning values to variables/Defining variables:  
Values can be assigned to variables using the assignment operator (=) i.e  
Syntax:  variable= value  
The left side of the above syntax is any variable but only one variable. Right side part is to assign a 
value to the left side variable. 
       Eg: x=100 ch=’m’; f1=8.932; 
 
Sometimes declaration and definition takes place in single statement.  
      Eg:   int a=5; declaration & definition both in single statement. 
   
  int a;  declaration in one line 
  a = 5;   definition in another line 
 
Declaring a variable as constant: 
The value of certain variables can be made to remain constant during the execution of C program by 
declaring the variable with data type qualifier const at the time of initialization. The constants will not 
change its value during the execution of the program. 
 
    Eg:  const int x=100; 



C Programming   Unit - I 

St Joseph’s Degree & PG College   23 

 

In the above example the value of x is made as constant and it will not change throughout the 
execution of the program. 

 
Difference between a variable and a constant: 
The difference between variables and constants is that variables can change their value at any time 
during the execution of the program that is Variables may vary but constants can never change their 
value. (The constants value is locked for the duration of the program). Constants can be very useful, Pi 

(π) for instance is a good example to declare as a constant. 

 
Example 3: Program to add three numbers 
void main() 
{ 
int a=8, b=4, c=12, x; 
clrscr(); 
 
x=a+b+c; 
printf(“The sum of a,b and c is %d”, x); 
 
getch(); 
} 

 
Data types: - 
 
➢ In c programming language, Datatype can be defined as a set of values with predefined 

characteristics.  
➢ Datatypes are used to declare variable, constants, arrays, pointers and functions. All the values in a 

datatype have the same properties like type and size.  
➢ The type of data or information which is used in the application should be declared by its 

appropriate data type.  
➢ The set of values for each data type is known as the domain for the data type.  

➢ Data types in C are classified into different categories. 
 

1) Primary/pre-defined/ Fundamental Data type: char, int, float, double. 
2) Secondary/user-defined data type: enum, typedef 
3) Derived data type: Arrays, structures, unions etc 
4) Empty data type: void 
 

 



C Programming   Unit - I 

St Joseph’s Degree & PG College   24 

 

1) Primary/Fundamental/scalar data type: - These are basically four fundamental data types, 
integer(int), character(char), floating point(float) and double precision floating point(double). Once we 
declare a variable with its data type then that variable is holding some properties like  
 
character types: A single character can be defined as a character (char) type data. Characters are 
usually stored in 8 bits of internal storage, that is it occupies 1-byte storage in memory. 
“%c “    is a format specification for character variables 
 

Int (Integer):  To represent numbers without decimal point we use integer data type. These are signed 

or unsigned. These data types are short int, int, long int. The Integer variables have a limited value. 
They range from –32768 to 32767. 
Syntax:  int variable1, variable2…….variable n; 
“%d “    is a format specification for integer variables. 
 
long int:  In order to provide some control over the range of numbers and storage space, C has three 
classes of integer storage, namely short int, int and long int, in both signed and unsigned forms. We 
declare long and unsigned integers to increase the range of values.  
“%ld “    is a format specification for long int variables 
 
floating point: Floating point numbers are stored in 32 bits with 6 digits of precision. Floating point 
numbers are defined in ‘C’ by keyword float. When the accuracy provided by a float number is not 
sufficient, the type double can be used to define the number. 
“%f “    is a format specification for float variables 
 
double: A double data type number uses 64 bits giving a precision of 14 digits. These are known as 
double precision numbers. Remember that double type represents the same data type that float 
represents, but with a greater precision.  
“%lf “    is a format specification for double variables 
 
long double: To extend the precision further for double variables, we may use long double which uses 
80 bits. 
“%Lf “    is a format specification for long double variables 
 

 



C Programming   Unit - I 

St Joseph’s Degree & PG College   25 

 

 
 
2) Secondary/Derived data type: The derived data types are complex structures that are built using 
the standard data types. 
They are: function, pointer, structure, union, and array. 
 
3) User-define data type: - The user defined data types are: 
 
 i) type definition (typedef)  
ii)Enumerated data type(enum). 
 
4) Empty data set: ANSI (American National Standards Institute) C supports the type void. 
It specifies an empty set of values. It is used to specify the return type of a function when it is not 
returning any value, and also to indicate any empty arguments list to a function. 
  Eg:  void display (void); 
 

 
Input/output statements: -  

➢ C programming language provides many built-in functions to read any given input and to 

display data on screen when there is a need to output the result.  

➢ All these built-in functions are present in C header files; we will also specify the name of header 

files in which a particular function is defined.  



C Programming   Unit - I 

St Joseph’s Degree & PG College   26 

 

➢ An input/output function can be accessed from anywhere within a C program by writing the 

function name, followed by a list of arguments enclosed in parentheses. <stdio.h> is the header 

file required by the standard input/output library functions.  

➢ The input/output functions permit the transfer of information between the computer and the 

standard input/output devices.  

➢ The input/output statements are as follows: 

 

 

1. Unformatted input/output functions:  
getchar( ): to read/input a character 
putchar( ): to print/output a character. 
gets( ): to read/input a string 
puts( ): to print/output a string 
getch():to read/input a character 
getche():to read/input a character with echo 

2. Formatted input/output functions:  
scanf(  ): to read/input multiple values 
printf( ): to print multiple values. 

 
 
Reading and Writing Character:  
 
➢ The getchar( ) function:- The getchar( ) function is used to read a single character from the 

standard input device(keyboard) and does not require any arguments. The general format is: 
Syntax: Character-variable=getchar( ); 
Eg: char c; 



C Programming   Unit - I 

St Joseph’s Degree & PG College   27 

 

 c = getchar(); 
 
➢ The getch( ) function: This is also an input function. This is used to read a single character from the 

keyboard like getchar() function. The character data read by this function is directly assign to a 
variable rather it goes to the memory buffer, the character data directly assign to a variable 
without the need to press the Enter key. Another use of this function is to maintain the output on 
the screen till you have not press the Enter Key.   
The general syntax is as:  v = getch();  where v is the variable of character type. 

 
➢ getche() function:This is same as getch() function, except it is an echoed function. It means when 

you type the character data from the keyboard it will visible on the screen.  
The general syntax is as: v = getche(); where v is the variable of character type. 
 
➢ The putchar () function: - Single characters can be displayed by using the putchar function. It is 

complementary to the getchar function. It transmits a character type variable to a standard output 
device and must be expressed as an argument, enclosed in parentheses to the function. 

Syntax: putchar(character variable name); 
Eg:   char c; 
  putchar(c); 
 

Example 4: A simple C program to illustrate the use of getch() function: 

 
/*Program to explain the use of getch() function*/ 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
char n; 
clrscr(); 
 
puts("Enter the Char"); 
n = getche(); 
puts("Char is :"); 
putchar(n); 
 
getch(); 
} 
 
OUTPUT IS: 
Enter the Char L 
Char is L 

 
➢ gets() function: This function is an input function. It is used to read a string from the keyboar. It is 

also buffered function. It will read a string, when you type the string from the keyboard and press 



C Programming   Unit - I 

St Joseph’s Degree & PG College   28 

 

the Enter key from the keyboard. It will mark nulll character ('\0') in the memory at the end of the 
string, when you press the enter key.  
The general syntax is as:  gets(v); 
where v is the variable of character type. For example: 

 
Ex: char n[20]; 
      gets(n); 

 
➢ puts() function:     This is an output function. It is used to display a string inputted by gets() 

function. It is also used to display an text (message) on the screen for program simplicity. This 
function appends a newline ("\n") character to the output. 
 
The general syntax is as:  

puts(v); 
or 

puts("text line"); 
where v is the variable of character type. 
 

Example 5:A simple C program to illustrate the use of gets() and puts() function: 
 
/*Program to illustrate the concept of puts() with gets() functions*/ 

#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
char name[20]; 
clrscr(); 
 
puts("Enter the Name"); 
gets(name); 
puts("Name is :"); 
puts(name); 
} 
 
OUTPUT IS: 
Enter the Name 
Laura 
Name is: 
Laura 

 
Formatted Functions: 
  
➢ The scanf( ) function:- It is an input function. Input data can be entered into the computer from a 

standard input device (keyboard) by means of scanf (scanf means scan formatted) function and can 



C Programming   Unit - I 

St Joseph’s Degree & PG College   29 

 

be used to read multiple values of any type at time. It returns the number of data items that have 
been entered successfully. 

Syntax: scanf(“control string” , arg1,arg2,arg3….argn); 
 

The control string specifies the field format in which the data is to be entered and the 
arguments arg1, arg2,…..specify the address of locations where the data is stored.  Control string and 
arguments are separated by comma (,).  
 The control string (also known as format string) contains field specifications. Each specifications 
consists of the % (percent sign), followed by conversion character which indicates the data item name 
with an optional number that specifying field width. Each variable name in the arguments list must be 
preceded by & (ampersand) symbol as the arguments values are to be stored in some particular 
address. 
 
Commonly used format specifications 
%c   data item is a single character 
%d   data item is a decimal integer 
%e   data item is a floating point value(exponential form) 
%f   data item is a floating point value (decimal form) 
%g   data item is a floating point value 
%h      data item is a short integer 
%i       data item is a decimal, hexadecimal, or octal integer 
%o   data item is an octal integer 
%s    data item is a string (group of characters) 
%u   data item is an unsigned integer 
%x     data item is a hexadecimal integer 
 
The data items must correspond to the arguments in the scanf function in number, in type and in 
order. Each variable to be read must have a field specification. 
 
Eg:   

• We can read multiple values at a time by using scanf 
scanf(“%d %d”, &num1,&num2); 
will read the data : 23479   50   i.e num1 is assigned by 23479 and num2 is assigned by 50. 

• We can read mixed type of values by using scanf function. 
 int    count;   

char code; 
 float ratio;  
 char itemname[20]; 
 scanf(“%d %c %f %s”, &count, &code, &ratio, itemname); 

will read the data like : 28 M 2.932    coffee 
 
 
➢ The printf( ) function:- It is an output function. Output data can be written from the computer onto 

a standard output device (monitor) by using the printf( ) function. The printf( ) function can be used 



C Programming   Unit - I 

St Joseph’s Degree & PG College   30 

 

to print multiple values of any type at time. It returns the number of data items that have been 
printed successfully. 

 
Syntax: printf(“control string” , arg1,arg2,arg3….argn); 
 

Where the control string refers to a string thet contains formatting information. And the 
arguments arg1, arg2,……..represent the individual output data items. The arguments can be written as 
constants, single variable names or array names, or more complex expressions. Control string and 
arguments are separated by comma (,).  
 The arguments in a printf function do not represent memory address and therefore the are not 
preceded by ampersand ( & ) symbol. We can print data items with formatted output by using field 
width option in printf function.  
 
Eg:   
➢ We can print multiple values at a time by using printf 

int num1=3467, num2=28; 
printf(“%d %d”, num1,num2); 
will display the data: 3467 28  

➢ We can print mixed type of values by using printf function. 
 int    count=23;   

char code=’X’; 
 float ratio=2.35;  
 printf(“%d %c %f %s”, count, code, ratio); 

will display the data like: 23 X    2.35  
➢ We can print formatted output by using printf function. It is possible to limit the number of 

characters by specifying a maximum field width for that data item and by taking the format string.             
 Int a,b; 

a=3457; 
b=123; 
printf(“%3d %2d”,a,b); 
it will display the data items a and b as:  
3457 123 

 

Example 6:  program for printf() and scanf() functions  
/*Program to explain the use of scanf(), printf() function*/ 
#include<stdio.h> 
#include<conio.h> 
void main() 
{ 
char sname[20]; 
int rno; 
clrscr(); 
 
//reading student name and roll number 



C Programming   Unit - I 

St Joseph’s Degree & PG College   31 

 

printf("Enter your  name"); 
scanf(“%s”,sname); 
printf(“Enter your roll number”); 
scanf(“%d”, &rno); 
 
//displaying student details 
printf(“Name %s”,sname); 
printf(“Roll Number %d“,rno); 
 
getch(); 
} 
 
 

 
Operators: - Operator is a symbol which represents a particular action that can be performed on 

operands .C is extremely rich in operators, and are classified as follows: 
 

 
 

 Operators can also be designated as unary, binary and ternary operators depending on whether they 
operate on one, two or three operands respectively. 
 
Unary operators: Only one operand is required to perform calculation. 

++, --, -, +, ! are some unary operators. 

Eg: - a    -    a is operand, - is unary operator, which operates on only one operand. 

Binary Operators: Two operands are required to perform calculation. 

Eg1:     a + b:   a, b are operands  

             + is operator (binary) which operates on two operands on a, b. 

Eg2: x * y * z :  x, y and z are operands, and * is binary operator which operates on two  

operands at a time. 



C Programming   Unit - I 

St Joseph’s Degree & PG College   32 

 

Ternary operator: Three operands are required to perform calculation.in C language we have one 

ternary operator that is conditional operator (? :) 

Eg: (expression 1)? (expression 2): (expression 3); 

a > b?printf("a"):printf("b"); 

 
   
  
The following are the different types of operators in C - 
           
1. Arithmetic Operators: These are 5 arithmetic operators in C. They are 

 
+ :    Addition or unary plus. 
- :     Subtraction or unary minus. 
* :     Multiplication 
/ :      Division 
% :      Modulus division (Remainder value). 
 

If an expression involves all integer values, then it is called integer arithmetic. If an expression 
involves all real (float) operands, then it is called real arithmetic, and when some of the operands are 
integer and some other are real, then expression is called Mixed-mode arithmetic and result is always a 
real number. 

 
Eg:    int a=5 b =2; 
    
       C = a + b      c = 7 
       C = a – b  c = 3 
       C = a * b         c = 10 
       C = a % b     c = 1 
 
2) Relational Operators: These are 4 relational Operators and 2 equality operators in C. They are 
 
< : less than 
>= : less than or equal to 
> : greater than 
>= : greater than or equal to 
= = : equal to 
!= : not equal to 
 

Relational Operators are used to compare two quantities and depending on their relation 
certain decisions are made. If the defined relation is true or correct then the value is one otherwise 0, 
it is false. These are used in decision making constructs like if….else, while, for etc. 
 



C Programming   Unit - I 

St Joseph’s Degree & PG College   33 

 

Eg: 1)a=5,b=2   2)a=5,b=4 
 
If (a>b)             if (a==b) 
    Big=a    printf (“a,b are equal”); 
else          else 
    Big=b    printf (“not”); 
 
 
3) Logical Operators These are three logical operators. They are 
. 
   && : logical AND 
    ||   : logical OR 
    ! : logical NOT 
 

• The Logical AND (&&) and logical OR ( || ) are used to test more than one condition.  

• In the logical AND (&&) operator, when both the conditions are true, then it is true. 

• In logical OR(||) operator, if one of the expression is true, then it is true. 

• The logical NOT (!) operator is used to change the value from true to false or false to true. 
      i.e    !(true)=false and  !(false)=true. 
 
    The truth table for logical AND and logical OR: 
 

 
   
  Eg: a=8, b=3, c=9 
 
If((a>b) && (a>c))    This expression yields false because a is not greater 
     Printf(“a is big”);   than c. i.e both should be true then only the express 
     -ion give true, otherwise false. 
i.e    T  &&  F   is   F 
        1   &&  0  is    0 
 



C Programming   Unit - I 

St Joseph’s Degree & PG College   34 

 

4) Increment/Decrement operators: -   
 

 
 

Increment operator (++) is used to increment the value by one. There are two ways to increment a 
value: Pre-increment and Post-increment 

• ++ x is pre-increment and x++ is post increment. Both gets evaluated to x = x +1. 
 i.e. + + x => x = x  + 1 
  x + + => x = x  + 1 

• In pre-increment, first the value is incremented by one and then the required operation is 
performed with the updated value. Where as in post-increment, first the operation is 
performed with the present value and then it is incremented by one. 

Eg: x = + + y; where y = 5 
After this expression: x = 6 and y = 6.  I.e. the value of y is incremented first ( y = y + 1 => y = 5 + 
1 => 6) and then it is assigned to x ( x = 6 ). 
 x = y + +; where y = 5 
After this expression: x = 5 and y = 6. I.e. first, the value of y is assigned to x (x = 5) and then y is 
incremented by one (y = y +1 => y = 5 +1 => 6 ) . 

Decrement operator (--) is used to decrement the value by one. There are two ways to decrement a 
value: pre-decrement and post- decrement. 

• --x id pre-decrement and x-- is post-decrement. Both gets evaluated to x = x – 1. 
        i.e. --x => x = x -1 
   x-- => x = x -1 

• In pre-decrement, first the value is decremented by one and then the required operation is 
performed with the updated value. Where as in post-decrement, first the operation is 
performed with the present value and then it is decremented by one. 

Eg: x = - - y; where y = 10 



C Programming   Unit - I 

St Joseph’s Degree & PG College   35 

 

After this expression: x = 9 and y = 9.  I.e. the value of y is decremented first ( y = y - 1 => y = 10 
- 1 => 9) and then it is assigned to x ( x = 9 ). 
 x = y - -; where y = 10 
After this expression: x = 10 and y = 9. I.e. first, the value of y is assigned to x (x = 10) and then y 
is decremented by one (y = y -1 => y = 10 -1 => 9). 
 

5) Assignment operators: - Assignment operators are used to assign the result of an expression or a 

value to a variable. The assignment operator is denoted by the symbol =. C also has a set of shorthand 

assignment operators of the form: 
 Variable   operator = expression 
=  : Assign right hand side value to the left hand side variable. 
+ = : Addition assignment 
- = : Subtraction assignment 
* = : Multiplication assignment 
/ = : Division assignment 
 
Eg: a = 5; 
 a += 2 => a = a +2 => a = 5 +2 => a = 7. 
 a *= 10 => a = a * 10 => a =  5 * 10 => a = 50. 
 

6) Conditional operator: - This can be represented by the symbol “ ? : ”. It is also called as ternary 

operator as it has three operands, and two operators. Each operand is an expression. The first two 

operands are separated by ? and : separates the last two operands. If the first expression yields true, 

then second expression is evaluated. If the first expression yields false value, then third expression is 
evaluated.  

 
Eg: a = 8  b = 10 
 Max = (a > b) ?   a    :   b;  
          
    exp -1    exp-2     exp -3 
Here a > b (8 is not greater than 10) expression is false so expression 3 is evaluated. I.e. the value of 
b is assigned to max. So max = 10. 
 
 a = 8  b =10 
 c = (a < b) ?   ++ a  :  ++b; 
Here a < b ( 8 is less than 10) expression is true, so expression  2 is evaluated. i.e. first, the value of 
a is incremented by one (pre-increment) and then assigned to c. So c = 9 and a = 9. 
 

7) Bitwise operators: - Bit-wise operators are low level operators, and these operators can work with 

only integer type operands. These operators are used for testing the bits. They are: 
 
&   Bitwise AND 



C Programming   Unit - I 

St Joseph’s Degree & PG College   36 

 

| Bitwise OR 
^ Bitwise XOR (exclusive OR) 
<< Bitwise left shift 
>>  Bitwise right shift 
~ Bitwise one’s complement 
Truth table for bitwise AND, bitwise OR and bitwise XOR is as follows: 
 

Op1 Op2  Op1 & Op2  Op1 | Op2  Op1 ^ Op2 

 
 0 0   0   0   0 
 
 0 1   0   1   1  
 
 1 0   0   1   1 
 
 1 1   1   1   0 
 

• The one’s complement operator is a unary operator, and inverts all the bits represented by its 
operand. i.e. 0s becomes 1s and 1s become 0s. 

             Eg: a = 5   a = 0101 ~a = 1010 

• The shift operators are used to move bit patterns either to the left or to the right and are used 
in the following form:          

  Op << n;     Op >> n;  
Where Op is an integer expression and n is the number of bits to be shifted. 

• The left shift operation causes all the bits in the operand Op to be shifted to the left by n 
positions. The left most n bits in the original bit pattern will be lost and the right most n bit 
positions that are vacated will be filled with 0s. Similarly, the right shift operation also takes the 
same process but shifted towards right side, and left most vacated positions are filled with 0s. 

• There are two restrictions on the value of n. 
i. It may not be negative 
ii. It may not exceed the number of bits used to represent the operand Op. 

 
Eg:  a = 5 (0101)  b = 8 (1000) 
 a & b =>  0101 & 1000 => 0000 => 0 
 a | b =>  0101  |  1000 => 1101 => 13 
 a ^ b => 0101 ^ 1000 => 1101 => 13 
 a << 1 => 0101 << 1 => 1010 =>10 
 a >> 1 => 0101 >> 1 => 0010 => 2 
  

8) Special operators: - The special operators are: 

, (comma operator): separates two values or expressions. 
Sizeof operator: gives the size of a given variable in bytes. 
* (Pointer operator): dereference operator or value at address operator 



C Programming   Unit - I 

St Joseph’s Degree & PG College   37 

 

     & (address of operator): gives the address of a particular location 

     . (Direct member selection operator): used in structure member selection 

     → (indirect member selection operator): used in structure member (pointer) selection  
 
Eg: c = (a =5, b = 8, a +b); 
Here first a becomes 5 and b becomes 8 and then a+b is evaluated to 5+8 => 13 and the right most 
expression (a + b) value is assigned to c. So c = > 13. 
 int a = 8; sizeof (a);  gives the value 2, that is the size of integer in bytes. 

        float x; sizeof(x);  gives the value 4, that is the size of float in bytes. 
   &x      gives address of the variable x. 
   *x       gives the value, which is pointed by x. 
 

                        
 
Operator precedence (Arithmetic operator precedence): 
Operator precedence describes the order in which the expression is to evaluate by providing some 
priorities to the operators. 

 

Rules of Operator Precedence:  

C applies the operators in arithmetic expressions in a precise sequence determined by the 

following rules:  

1. First priority - Parentheses- Operators in expressions may contained within pairs of parentheses. 

These parentheses are evaluated first. Parentheses are said to be at the “highest level of 

precedence”.  In cases of nested such as: ( ( a + b ) + c ), The operators in the innermost pair of 

parentheses are applied first. 

2. Second priority - Multiplication, division and remainder operations are applied next. If an 

expression contains several multiplications, division and remainder operations, evaluation 

proceeds from left to right. Multiplication, division and remainder are said to be on the same level 

of precedence. 

3. Third priority - Addition and subtraction operations are evaluated next. If an expression contains 

several addition and subtraction operations, evaluation proceeds from left to right. Addition and 

subtraction also have the same level of precedence, which is lower than the precedence of the 

multiplication, division and remainder operations. 

4. Last priority - The assignment operator (=) is evaluated last. 

 



C Programming   Unit - I 

St Joseph’s Degree & PG College   38 

 

Example 7: program on operators. 

//Program to implement different arithmetic operators with operator precedence. 

void main() 
{ 
int a=20;    
int b=10; 
int c=15; 
int d=5; 
int e; 
 clrscr(); 
 
   e = (a + b) * c / d;     
   printf("Value of (a + b) * c / d is : %d\n",  e ); 
 
   e = ((a + b) * c) / d;      // (30 * 15 ) / 5 
   printf("Value of ((a + b) * c) / d is  : %d\n" ,  e ); 
 
   e = (a + b) * (c / d);     // (30) * (15/5) 
   printf("Value of (a + b) * (c / d) is  : %d\n",  e ); 
 
   e = a + (b * c) / d;       //  20 + (150/5) 
   printf("Value of a + (b * c) / d is  : %d\n" ,  e ); 
 
getch(); 
} 
 
 

Expressions: -  

An expression is a sequence of operands and operators that reduce to a single value. An 
expression is a combination of variables, constants and operators following the syntactic rules of the 
language. Expressions are evaluated using an assignment statement of the form: 
 Variable=expression; 
 
Eg:  a = x * y;      a + b = c; 
 b = (x * x) – 2 * a * b;     Valid expressions  a, b = x * y;       Invalid expressions 
 c = a / b;      a * b = x * y; 
 
 
Evaluation of Expressions: 

Expressions are evaluated using an assignment statement of the form: 

                                      Variable = expression; 



C Programming   Unit - I 

St Joseph’s Degree & PG College   39 

 

Where variable is any valid C variable name. When the statement is encountered, the 

expression is evaluated first and the result then replaced the previous value of the variable on the left-

hand side. All variables used in the expression must be assigned values before evaluation is attempted. 

Examples: 

X = a * b – c; 

Y = b / c * a; 

Z = a – b / c + d; 

Example 8:example program on expressions 

void main() 

{ 

float a, b, c, x, y, z; 

a=9; 

b =12; 

c = 3; 

x = a – b / 3 + c * 2 – 1; 

y = a – b / (3 + c) * (2- 1); 

z = a –(b / (3 + c) * 2) – 1; 

printf(“x = %f\n”, x); 

printf(“y= %f\n”, y); 

printf(“z = %f\n”, z); 

} 

 

 

======================***************************========================= 

Prepared by Sunitha Mutchinthala 

Assistant Professor 

Dept of Computer Science 

St Joseph’s Degree & PG College 



C Programming   Unit – II 

St Joseph’s Degree & PG College   1 

 

Unit - II:  
Decision Making and Branching: Introduction, if, if-else, Nested-If statements, Switch-case statement. 

Decision Making and Looping:  Introduction, While Statement, Do-while statement, For Statements, 

break and continue statements. 

 

Decision Making and Branching: 

 
A program is nothing but the execution of sequence of one or more instructions. Sometimes it 

is desirable to alter the execution of sequence of statements in the program depending upon certain 
circumstances. This involves decision making through branching and looping. Control statements 
specify the order in which the various instructions in a program are to be executed by the computer. 
i.e. they determine the ‘flow of control’ in a program.  

 
 Decision making and branching structures require that the programmer to specifies one or 

more conditions to be evaluated or tested by the program along with a statement(s) to be executed if 
the condition is determined to be true, and optionally, other statements to be executed if the 
condition is determined to be false. There are different decision making statements in C language: 

 
1. If statement – simple if statement, If-else statement, Nested if statement and else-if ladder 
2. Switch-case statement 
  

 
➢ if statement: - The if statement is a powerful decision making statement and is used to control the 

flow of execution of statements. It can be achieved through different forms of if statement. 
a) simple if b) if – else c) nested if-else d) else-if ladder 
 
a) simple if statement: - C uses the keyword “if” to execute a set of statements or one statements 
when the logical condition is true. 
Syntax:            if(condition or expression) 
  { 
   Statements-block 
  } 
  next statement 
It allows the computer to evaluate the expression first and then depending on the value of expression, 
the control is transfers to the particular statement. If the expression is true(non-zero value) then the 
statement-block is executed and next statement is executed. If the expression is false(zero), directly 
next statement is executed without executing the statement-block. Statement-block may be one or 
more statements. If more than one statement, then keep all those statements in compound block({ }). 
Eg: 1.   if( age > 60) 
  printf(“Old person”); 
 
2. if( marks >100) 

{ 



C Programming   Unit – II 

St Joseph’s Degree & PG College   2 

 

 printf(“ Invalid marks”); 
 printf(“ Check your marks once again “); 
} 
 

b) if –else statement: - It is an extension of simple if. It takes care of both the true as well as false 
conditions. It has two blocks. One is for if and it is executed when the condition is true, the other block 
is for else and it is executed when the condition is false. No multiple else statements are allowed with 
one if.  
 
Syntax: if(test condition) 
  { 
   True block statements 
  } 
  else 
  { 
   False block statements 
  } 
  Next statement 

Flow Diagram of if statement: 

 
If the condition is true then true block statement(s) is executed, otherwise if the condition is false, then 
false-block statement(s) is executed. The else cannot be used without if. 
 
Eg:  if(a%2 = = 0) 
 { 
  Printf(“ even number”); 
 } 
 else 



C Programming   Unit – II 

St Joseph’s Degree & PG College   3 

 

 { 
  Printf(“odd number”); 
 } 
 
c) Nested if-else statement: - When a series of decisions are involved, we have to use more than one 
if-else in nested form. 
 
Syntax:  if( condition -1) 
   { 
    if(condition -2) 
    {  
     ……… 
     if(condition-3) 
     { 
      Statement -1 
     }  
     else 
     { 
      Statement -2 
     } 
    } 
    else 
    { 
     Statement-3 
    } 
   } 
   else 

{ 
 Statement-4 
} 

   Next statement 
 
 
In this kind of statements, number of logical conditions is checked for executing various statements. If 
any condition is true then associated block will be executed, otherwise it skips and executes else block 
statements. We can add repetitively if statements in else block also. 
Eg:  if(a>b) 
 { 
  if(a>c) 
  { 
   printf(“ ais big”); 
  else 
  { 
   printf(“c is big”); 



C Programming   Unit – II 

St Joseph’s Degree & PG College   4 

 

  } 
 } 
 else 

{ 
 if(c>b) 
 { 
  printf(“c is big”); 
 } 
 else 

{ 
 printf(“ b is big’); 

  } 
 } 

 
   
d) else-if ladder: - The else-if ladder is used when multipath decisions are involved. 
 
Syntax: if(condition-1) 
   Statement-1 
  else if(condition-2) 
    Statement-2 
   else if(condition-3) 
     Statement-3 
    .. 
    .. 
    .. 
    else 
     Statement-x 
  Next statement 
Eg: if(avg>=70) 
  Printf(“ distinction”); 
 else if(avg>=60) 
   Printf(“ first class”); 
  else if(avg>=50) 
    Printf(“second class”); 
   else if(avg>=40) 
     Printf(“third class”); 
    else 
     Printf(“fail”); 
 
 

 



C Programming   Unit – II 

St Joseph’s Degree & PG College   5 

 

Switch-Case statement: - At times, the if condition may increase the complexity of the program 

when one of many alternatives is to be selected. C has built-in multiway decision statement known as 

switch-case. A switch statement tests the value of a variable and compares it with multiple cases. Once 

the case match is found, a block of statements associated with that particular case is executed. The 

switch statement requires only one argument variable or expression. It tests the value of a given 

variable against a list of case values and when a match is found, a block of statements associated with 

that case is executed, if not such match, then default statement is executed. 

 
Syntax: switch(variable or expression)  
  { 
   case value-1:  block-1 
     break; 
   case value-2:  block-2 
     break; 
  .. 
  .. 
  .. 
  .. 
  default:  default-block 
  } 
  next statement 
The following are the rules to follow in switch –case statement implementation 
➢ The expression in switch is an integer expression or character.  

➢ Value-1, value-2 these are either integer constants or character constants. 

➢ Case labels always end with a colon ( : ). Each of these cases is associated with a block. 

➢ These values should be unique with in a switch statement. Case labels end with colon (:) 

➢ The break statement signals the end of a particular case and causes an exit from the switch 

statement, transferring the control to the next statement following the switch. 

➢ The default is an optional case when present. It will be executed if the value of the expression 

doesn’t match with any of the case values. If not present, no action takes place if all matches fail 

and control goes to the next statement. 

 



C Programming   Unit – II 

St Joseph’s Degree & PG College   6 

 

 
 
 
 
 

Eg: Following program illustrates the use of switch: 

#include <stdio.h> 

    int main() { 

        int num = 8; 

        switch (num) { 

            case 7: 

                printf("Value is 7"); 

                break; 

            case 8: 

                printf("Value is 8"); 

                break; 

            case 9: 

                printf("Value is 9"); 



C Programming   Unit – II 

St Joseph’s Degree & PG College   7 

 

                break; 

            default: 

                printf("Out of range"); 

                break; 

        } 

        return 0; 

    } 

Output: 

Value is 8 

 

 
Decision making and looping – Sometimes many tasks are needed to be done with the help of a 

computer and they are repetitive in nature. Such type of actions can be easily done by using loop 
control statements. A loop statement allows us to execute a statement or group of statements 
multiple times. A loop is defined as a block of statements which are repeatedly executed for certain 
number of times to do a specific task. 
 
Eg: calculation of salary of employs of an organization for every month. 
  
Steps in writing loops: -  

1. Loop variable: It is a variable used in loop to evaluate, Initialization of a loop variable with 
starting value or final values in the loop. 

2. Test-condition: It is to check the condition to terminate the loop. It is any relational expression 
with the help of logical operators. 

3. Update statement: It is the numerical value added or subtracted to the loop variable in each 
round of the loop. 

 
C language supports three types of loop control statements. 

➢ while 
➢ do-while 
➢ for 

 

➢ while:-  This is the simplest looping structure in C. the while is an entry-controlled loop statement. 

 
Syntax: initial statement 

while(test condition) 
  { 
   Statement(s) 
   Update statement 
  } 
 



C Programming   Unit – II 

St Joseph’s Degree & PG College   8 

 

 
The test condition may be any expression, is evaluated and if it is true then the body of the loop is 
executed. The test condition is once again executed for updated values, and if it is true the body of the 
loop is executed once again. This process is repeated until the test condition is finally becomes false 
and control is transferred out of the loop to the next statement. The body of the loop may contain one 
or more statements. The braces are needed if the body of the loop contains more than one statement. 

 

Flow Diagram of while loop: 

 

 
Eg:  main() 
  { 
   int i,sum; 
   i = 1; sum=0; 

 while(i<=10) 
 { 
  sum = sum + i ; 
  i + +; 
 } 
 printf(“sum=%d”,sum); 
} 

Here the value, sum of first ten numbers is stored into the variable sum; i is called as loop variable. 
The loop is repeated for ten times to do that process, each time by incrementing the value of i by one. 
Once the value of i becomes 11 then the test condition becomes false and the control is out of the 
loop. 
 



C Programming   Unit – II 

St Joseph’s Degree & PG College   9 

 

➢ do-while:- On some occasions it might be necessary to execute the body of the loop before the test 

condition is performed. Such situations can be handled by the do-while statement. Do-while id exit 
controlled loop statement. 
Syntax: initial statement 
  do 
  { 
   Statement(s) 
   Update statement 
  } while(test – condition); 
 
  Next statement 
 
 
The body of the loop is executed first, and then at the end of the loop the test condition is evaluated, if 
it is true then the statements are executed once again. The process of execution continues until the 
test condition finally becomes false and the control is transferred to the next statement 

Flow diagram of do while loop 

 

Eg:  main() 
 { 
  int i, sum; 
  i =1; 
  sum=0; 
 
 
  do 
  { 
   sum = sum + i; 
   i + +; 
  } while( i<=10); 



C Programming   Unit – II 

St Joseph’s Degree & PG College   10 

 

  printf(“Sum=%d”, sum);  
 }  
 
 

➢ The for statement: - The for loop entry controlled loop that provides a more concise loop control 

structure. 
Syntax:  for(initialization ; test-condition ; increment/decrement) 
   { 
   Statement(s) 
  } 
  Next statement 
 

Flow diagram of do while loop 

 
 

The for loop allows to specify three things about the loop in a single line. 
i. Setting a loop counter variable to an initial value using assignment statement. 
       Eg: i=1   count=0; 
ii. the test condition is a relational expression that determines the number of iterations 

desired or it determines when to exit from the loop. If the test condition is true, the body of 
the loop is executed, otherwise the loop is terminated and execution continues with the 
next statement after the loop. 

      Eg:   i<=10   
iii. After evaluating the last statement of the body the loop, the control is transferred to the 

increment/decrement statement of the loop. And the new value is again tested to see 
whether it satisfies the loop condition or not. 

       Eg:  i++ ++i i+=2 
 



C Programming   Unit – II 

St Joseph’s Degree & PG College   11 

 

• The body of the loop may contain one or more statements. In case there is more than one 

statement then braces  

• The three sections of for loop must be separated by semicolons (;). Initialization and incr/decr 

parts may contain more than one statement must be separated by commas. 

Eg:  for(i=1, j=10 ; i<=10 ; i++, j--) 

• The test-condition may have any compound relation and the testing need not be limited only to 

the loop variable. 

Eg:  for(i=1; i<20 && sum <100 ; i++) 

• It is permissible to use expressions in the assignment statement of initialization and incr/decr 

sections. 

Eg:  for( k=(a+b)/2; k>0;k=k/2) 

• The sections of for loop my absent depends on requirement in the program. But it leads to take 

some extra care about those sections. 

Eg:  for(  ;  ;  ) 

This statement leads to infinite loop or never–ending process. 

 

 
Nesting of loops: - The way if statement can be nested, similarly whiles and for can also be nested. 

Eg:  for(i=1;i<=3;i++) //outer for loop 
 { 
  for(j=1;j<=2;j++) // inner for loop 
  { 
   Printf(“\t %d   %d”, i,j);  

   } 
   Printf(“\n”); 
  } 
 Here in this example nested for loop is used, and the total process is executed for 6( 3 * 2) 
times. And the output of this example will be: 1   1 1     2 
       2   1 2     2 
       3   1 3     2 
The way for loops have been nested here, similarly while and do-while can also be nested. Not only 

this, a for loop can occur within a while loop, or a while within a for. 

Eg: Comparison of three loops. Finding the sum of first 10 numbers by using all loop statements. 

 



C Programming   Unit – II 

St Joseph’s Degree & PG College   12 

 

//sum of first 10 numbers by 
using while loop. 

#include<stdio.h> 

#include<conio.h> 

void main() 

{ 

 int i,sum; 

 clrscr(); 

 sum=0; 

i=1; 

while(i<=10) 

{ 

 sum=sum+i; 

 i++; 

} 

printf(“Sum of first 10 
numbers = %d”, sum); 

getch(); 

} 

//sum of first 10 numbers by 
using do-while loop. 

#include<stdio.h> 

#include<conio.h> 

void main() 

{ 

 int i,sum; 

 clrscr(); 

 sum=0; 

i=1; 

do 

{ 

 sum=sum+i; 

 i++; 

}while(i<=10); 

printf(“Sum of first 10 
numbers = %d”, sum); 

getch(); 

} 

//sum of first 10 numbers by 
using for loop. 

#include<stdio.h> 

#include<conio.h> 

void main() 

{ 

 int i,sum; 

 clrscr(); 

for(i=1,sum=0;i<=10;i++) 

{ 

 sum=sum+i; 

} 

printf(“Sum of first 10 
numbers = %d”, sum); 

getch(); 

} 

 

 
 

Jumps in loops: - We often come across some situations where we want to make a jump from one 

statement to other statement, jump out of a loop or to jump to next iteration of the loop instantly, this 
can be accomplished by the statements like: 

➢ break 
➢ continue 

 
The break statement: -  

• When we want to jump out of a loop instantly without waiting to get back to the condition test, 
then the keyword break allows us to do this.  

• The break statement provides an early exit from the loop.  

• A break is usually associated with an if. 
 
 

Eg:  for(i=1;i<=3;i++) 
 { 
  for(j=1;j<=5;j++) 
  { 
   if(j = = 3) 
    break; 
   else 



C Programming   Unit – II 

St Joseph’s Degree & PG College   13 

 

    printf(“ %d %d”, i, j); 
  } 
  Printf(“\n”); 
 } 
Output:  1    1  1   2    
   2    1   2   2 
   3    1   3   2 

In this example when j value equals 5, break takes the control outside the inner for loop only, 
since it is placed inside the inner loop. 
 
The continue statement: -  

• When we want to take the control to the beginning of the loop by passing the statements 
inside the loop which are not yet been executed, then the keyword continue allows us to do 
this. 

• It causes the next iteration of the loop to begin and it applies only to loops. 

• A continue is usually associated with an if. 
Eg:   for(i=1;i<=2;i++) 
 { 
  for(j=1;j<=2;j++) 
  { 
   if(i = = j) 
    continue; 
   else 
    printf(“ \n%d  %d”, i, j); 
  } 
 } 
 
Output:  1   2  
   2   1 
In this example when i and j values are equal, continue takes the control to the inner for loop by 
ignoring rest of the statements in the inner for loop.  
 
 



Unit – III      C Programming   

St Joseph’s Degree & PG College  1 
 

 

Arrays: Introduction, Defining, creating and initializing an array One-Dimensional Array, Two-Dimensional 
Array. 
Pointers: Introduction, Understanding Pointer-creating and assigning pointer, Accessing address of a 
variable. Pointers to arrays. 

_______________________________________________________________________ 

 

ARRAYS 

 

Introduction: 
C supports a derived data type known as array that can be used to handle large amounts 

of data (multiple values) at a time.  
 

• An array is collection of elements of the same data type, which share a common name.  

• Array elements are always stored in contiguous memory locations. 

• Each element in the group is referred by its position called index. 

• The first element in the array is numbered 0, so the last element is one less than the size 
of the array. 

• Before using an array its type and dimension must be declared, so that the compiler will 
know what kind of an array and how large an array. 

 
Each array element is referred by specifying the array name followed by one or more 

subscripts, with each subscript enclosed in square brackets. The value of each subscript must 
be expressed as a non-negative integer, variable or expression. The number of subscript 
determines the dimensionality of the array.  We can use arrays to represent not only list of 
values but also tables of data in two or more dimensions. We have different types of arrays 
based on its dimension. 

• One-dimensional arrays / Single-dimensional arrays 

• Two-dimensional arrays / Double-dimensional arrays 

• Multi-dimensional arrays 
 

One – Dimensional arrays: - 
 
A list of items can be given one variable name using only one subscript and such a variable is 
called one-dimensional array or single-dimensional variable. C array is beneficial if you have to 
store similar elements. For example, if we want to store the marks of a student in 6 subjects, 
then we don't need to define different variables for the marks in the different subject. Instead of 
that, we can define an array which can store the marks in each subject at the contiguous memory 
locations. By using the array, we can access the elements easily. Only a few lines of code are 
required to access the elements of the array. 
 



Unit – III      C Programming   

St Joseph’s Degree & PG College  2 
 

 
Syntax: The general form of array declaration is: 
 
  data-type array-name[size]; 
 
The data-type specifies the type of elements such as int, float or char. And the size indicates the 
maximum number of elements that can be stored in that array. 
 
Eg: 
int  a[5] ;    here a is an array containing 5 integer elements with index values 0 to 4. 

float  height[10]; here height is array containing 10 real elements with index values 0 to 9. 

char  name[20]; here name is an array containing 20 characters with index values 0 to 19. 
 
Note: C language character strings are as simple as array of characters. And every string should 
be terminated by null character (‘\0’). 
 
Example: Array representation in memory 

int a[5]; 

And the computer reserves five storage locations as shown below  

Location a[0] 

Location a[1] 

Location a[2] 

Location a[3] 

For example if the values to the array elements can be assigned as follows-  

a[0]=35   

a[1]=40 

a[2]=20 

a[3]=57 

a[4]=19 

This would cause the array ‘a’ to store the values as shown below. 

 

a[0] 

a[1] 

a[2] 

a[3] 

a[4] 

 

Declaration of One Dimensional Arrays: 

35 

40 

20 

57 

19 



Unit – III      C Programming   

St Joseph’s Degree & PG College  3 
 

 The general form of array declaration is:  datatype  variable-name[size]; 

 

The data type specifies the type of element that will be contained in the array such as int, float or 

char and size indicates the maximum number of elements that can be elements that can be 

stored inside the array (or size of an array)  

For example: 

1) float height[50];  

 ‘float’ declares the height to be an array containing 50 real elements. Any subscripts 0 to 

49 are valid. 

2) int group[10]; 

 'int’ declares the group as an array to contain a maximum of 10 integers constants 

3)char name[10];  

  ‘char’ declares the size of the name array to be only 10 characters. 

  
Initializing of One-Dimensional 

We can initialize (store values into array) an array in two methods. 

Direct Initialization (Compile time initialization) 
Indirect Initialization (Runtime Initialization). 
 

Method1 (Direct Initialization/Compile time Initialization): We can initialize the elements of 
arrays in the same way as the ordinary variables when they are declared. The general form of 
initialization of arrays is: 
 

Syntax: 

Datatype array-name[size] = {list of values}; 

The values in the list are separated by commas. 

Examples: 

int number[3] = {0, 0, 0}; 

will declare the variable number as an array of size 3 and will assign zero to each element.  

   

float total[5] = {0.5, 15.75,-10}; 

will initialize the first three elements to 0.5, 15.75, and -10.0 and the remaining two elements to 

zero. 

 int counter[  ] = {1,1,1,1}; 

will counter array to contain four elements with values 1. This approach works fine as long as we 

initialize every element in the array. 

 



Unit – III      C Programming   

St Joseph’s Degree & PG College  4 
 

 Char name[  ] = { ‘J’, ‘o’, ‘h’, ‘n’, ‘\0’}; 

Declares the name to be array of five characters, initialized with 

string “John” ending with null character. 

 

Program: 

#include<stdio.h> 

void main( ) 

{ 

 int  a[10] ={10,20,30,40,50,60,70,80,90,100};                        

printf(“%d\n”,a[0]);       

printf(“%d\n”,a[1]);      

printf(“%d\n”,a[2]); 

printf(“%d\n”,a[3]); 

printf(“%d\n”,a[4]); 

printf(“%d\n”,a[5]);               

printf(“%d\n”,a[6]); 

printf(“%d\n”,a[7]); 

printf(“%d\n”,a[8]); 

printf(“%d\n”,a[9]); 

} 

 

 

Method2 (Indirect Initialization/Runtime Initialization): 

An array can be explicitly initialized at run time. This approach is usually applied for initializing 

large arrays. We can use a scanf to initialize an array to 

initialize at runtime. 

int x[3];  

                      scanf(“%d %d %d”, &x[0], &x[1], &x[2]); 

Will initialize array elements with the values entered the 

through the keyboard. 

 

Program: 

Write a C program to find the total of the marks given in an 

array. 

#include<stdio.h> 

void main( ) 

{ 

Output: 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Output: 
enter array elements: 
1 
2 
3 
4 
5  
The sum of the marks is: 
15 
 



Unit – III      C Programming   

St Joseph’s Degree & PG College  5 
 

 int  a[5] , sum=0, i; 

 printf(“enter array elements:”); 

for(i=0; i<5; i++) 

{ 

 scanf(“%d”, &a[i]); 

} 

for(i=0;  i<5; i++) 

{ 

sum=sum+a[i]; 

} 

printf(“the sum of the marks is: %d”, sum); 

} 

 

  

Two Dimensional Arrays (2-D Array): 

A two-dimensional array can be considered as a table which will have x number of rows and y 

number of columns. In other words, a two dimensional array is collection of single dimensional 

arrays. It also collection of elements of similar type stored in sequential rows and columns 

format. 

The general form of 2-D array declaration is: 

datatype  variable-name[row-size][column-size]; 

 

A two-dimensional array a, which contains three rows and four columns can be shown as follows: 

 
Example: 

int a[3][4]; 

Here row size is 3 and column size is 4 and data type is int(integer) 

Consider the following matrix. 

         11     12     13 20 

A=   14     15      16 21 

         17     18     19 22 



Unit – III      C Programming   

St Joseph’s Degree & PG College  6 
 

The above mentioned matrix is 3 X 4. The matrix elements can be accessed using an array 

A[m][n], where m represents row number (here m=3) and n represents column number(n=4). 

The array elements are represented as follows: 

Similarly, 

A[0][0]=11 

A[0][1] = 12 

A[0][2] = 13 

A[0][3] = 20 

A[1][0] = 14  

A[1][1] = 15  

A[1][2]=16 

A[1][3]=21 

A[2][0]=17 

A[2][1]=18 

A[2][2]=19 

A[2][3]=22 

 

So we can declare 2-dimensional array for above matrix as A [3][3].  

 

Initializing of Two-Dimensional Array: two dimensional arrays also can be initialized directly at 1. 

Compile time along with the declaration of array itself and 2. Runtime by using scanf function. 

 

Two-dimensional arrays may be initialized by following their declarations with a list of intial 

values enclosed in braces. 

For example: 

 int marks[2][3] = {0, 0, 0, 1, 1, 1}; 

Initializes the elements of the first row to zero and second row to one. The initialization is done 

by row. The above statement is equivalently written as 

 int marks[2][3] = {{0,0,0}, {1,1,1}}; 

   or 

 int table[2][3] = { 

{0,0,0},  

{1,1,1} 

         }; 

When the array is completely initialized with all values, explicitly we need not specify of the first 

dimension, like below, 

int marks[  ][3] = { 



Unit – III      C Programming   

St Joseph’s Degree & PG College  7 
 

{0,0,0},  

{1,1,1} 

         }; 

If the values are missing in an initializer, they are automatically set to zero. For example: 

int table[2][3] = { 

{1,1},  

{2} 

         }; 

This will initialize the first two elements of the first row to one, the first element of the second 

row to two, and all other elements to zero. 

When all the elements are to be initialized to zero, the following short-cut method may be used. 

 int m[3][5] = { {0}, {0}, {0} }; 

Program: 

Write a C program to add two matrices using two dimensional arrays. (Runtime initialization). 

#include <stdio.h> 
void main() 
{ 
int a[3][3], b[3][3],c[3][3], i, j; 
 
printf("Enter the elements of matrix1:"); 
for(i=0;i<3;i++)  
{ 
 for(j=0;j<3;j++) 
 { 
  scanf("%d",&a[i][j]); 
 } 
} 
 
printf("Enter the elements of matrix2:"); 
for(i=0;i<3;i++)  
{ 
 for(j=0;j<3;j++) 
 { 
  scanf("%d",&b[i][j]); 
 } 
} 
 
for(i=0;i<3;i++) 
{ 
 for(j=0;j<3;j++) 



Unit – III      C Programming   

St Joseph’s Degree & PG College  8 
 

 { 
  c[i][j] = a[i][j] +b[i][j];  
 } 
} 
 
printf("The sum of the two matrices is: \n"); 
for(i=0;i<3;i++) 
{ 
 for(j=0;j<3;j++) 
 { 
  printf("%d ",c[i][j]); 
 } 
 printf(“\n”); 
} 
getch(); 
} 
 

 
Advantage of C Arrays 
1) Code Optimization: Less code to the access the data. 
2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily. 
3) Ease of sorting: To sort the elements of the array, we need a few lines of code only. 
4) Random Access: We can access any element randomly using the array. 
 
Disadvantage of C Arrays 
1) Fixed Size: Whatever size, we define at the time of declaration of the array, we can't exceed the 

limit. So, it doesn't grow the size dynamically like Linked List which we will learn later. 

 
 
 

Pointers: - A pointer is a derived data type in C. It is built from one of the fundamental data 
type available in C. Pointer is a variable which contains memory address as its value. Pointers are 
frequently used in C language, as they offer a number of advantages to the programmers. They 
are: 
 

➢ Pointers are more efficient in handling arrays and data tables. 

➢ Pointers can be used to return multiple values from a function via arguments. 

➢ The use of pointers to character strings results in saving of data storage space in memory. 

➢ Pointers allow C to support dynamic memory management. 

➢ Pointers reduce the length and complexity of programs. 

➢ They increase the execution speed and thus reduce the program execution time. 



Unit – III      C Programming   

St Joseph’s Degree & PG College  9 
 

Pointers provide an efficient tool for manipulating dynamic data structures such as linked lists, 
stacks, queues, and trees. 
 
Declaration and Initialization of pointer variables: - 
 
 Since pointer is a variable, it should be declared before we use. The declaration causes the 
compiler to allocate memory location for the pointer variable. The declaration of a pointer 
variable takes the following form. 
 
Syntax:  data-type * pointer variable name; 
 
Here, the pointer variable preceded by the symbol *, which tells the compiler that it is a pointer 
variable, and as it is a variable it needs a memory location. 
 
* - This operator is called as “value at address operator” or “indirection operator” or 
“dereferencing operator”, and it gives the value stored at a particular address. 
& - This is called as “Address of operator”, and it gives address of a particular memory. 
 
Eg: int  * p; p is a pointer variable that points to an integer data type. 
  float  *q; q is a pointer to a floating-point variable. 
 
Eg: int  a = 5;  
  int *p;   declaration of pointer variable 
  p = & a;  initialization of pointer variable 
 
   a     Variable      p 
 
     Value 
       
  3010      Address       4070 
 

• We can also combine the declaration and initialization as follows: 
int  a = 5; 
int *p = &a; 

 

• It is also possible to combine declaration of data variable, pointer variable and the 
initialization of the pointer variable in one step as follows: 

int a, *p = &a; 
 

• But the following statement is not valid. 
int *p = &a, a; 

 

    5   3010 



Unit – III      C Programming   

St Joseph’s Degree & PG College  10 
 

• We must ensure that the pointer variable always pointing to the corresponding type of 
data. 
Eg: float a; 

       int x, *p; 
                            p = &a   // this is not allowed as p is integer pointer and a is float variable. 

• We could also define a pointer variable with an initial value of NULL or zero. 
int *p = NULL; 
int *p = 0; 

 
Accessing a variable through its address/pointer: -  Once a pointer has been assigned by the 
address of a variable, then we can access the value of the variable using its pointer. 
In C language we have two special operators as  

➢ Value at address operator/Pointer operator - * 

➢ Address of operator - &  

 

Eg:   int  a, *p, x;     
  a = 5; 
  p = &a;    
  x = *p; 
 
Here, a, x are integer variables and p is pointer variable pointing to an integer ‘a’. and ‘x’ is 
assigned by *p. Thus the value of x would be 5.  So we can access the value of a variable (a) 
through its pointer (p) by using value at address operator (*p). 
 
The following program illustrate the use of an indirection operator (*) to access the value 
pointed to by an integer in different ways. 
 
void main( ) 
{ 
  
int a, *p; 
 float b, *q; 
 
clrscr(); 
 
 a = 5; 
 p = &a; 
 
 b = 8.2; 
 q = &b; 
 



Unit – III      C Programming   

St Joseph’s Degree & PG College  11 
 

 printf("\n Value of a is : %d", a); 
 printf("\n Value of a is : %d", *p); 
 printf("\n Value of a is : %d", *(&a)); 
 
 printf("\n %d is stored at %u", a, &a); 
 printf("\n %d is stored at %u", *p, p); 
 
 printf("\n Value of b is : %f", b); 
 printf("\n Value of b is : %f", *q); 
 printf("\n Value of b is : %f", *(&b)); 
 
 getch(); 
} 
 
OUTPUT: 
 Value of a is : 5 
 Value of a is : 5 
 Value of a is : 5 
 
 5 is stored at 65522 
 5 is stored at 65522 
 
 Value of b is : 8.200000 
 Value of b is : 8.200000 
 Value of b is : 8.200000 
 

Pointers to Arrays: 
When an array is declared, compiler allocates sufficient amount of memory to contain all the 

elements of the array. Base address i.e address of the first element of the array is also allocated 

by the compiler. Suppose we declare an array arr, 

 

int arr[5] = { 1, 2, 3, 4, 5 }; 

 

Assuming that the base address of arr is 1000 and each integer requires two bytes, the five 

elements will be stored as follows: 

  



Unit – III      C Programming   

St Joseph’s Degree & PG College  12 
 

Here variable arr will give the base address, which is a constant pointer pointing to the first 
element of the array, arr[0]. Hence arr contains the address of arr[0] i.e 1000. In short, arr has 
two purpose - it is the name of the array and it acts as a pointer pointing towards the first 
element in the array. 

arr is equal to &arr[0] by default 
We can also declare a pointer of type int to point to the array arr. 

int *p; 
p = arr;   
// or,  
p = &arr[0];    //both the statements are equivalent. 

Now we can access every element of the array arr using p++ to move from one element to 
another. 
NOTE: You cannot decrement a pointer once incremented. p-- won't work. 
 

Pointer to Array 
As studied above, we can use a pointer to point to an array, and then we can use that pointer to 
access the array elements. Let’s have an example, 
 

#include <stdio.h> 
int main() 
{ 
    int i; 
    int a[5] = {1, 2, 3, 4, 5}; 
    int *p = a;       // same as int*p = &a[0] 
    for (i = 0; i < 5; i++) 
    { 
        printf("%d", *p); 
        p++; 
    } 
     
    return 0; 
} 

In the above program, the pointer *p will print all the values stored in the array one by one. We 
can also use the Base address (a in above case) to act as a pointer and print all the values. 
 
 
Example – Array and Pointer Example in C 

#include <stdio.h> 
int main( ) 
{ 
   /*Pointer variable declaration */ 
   int *p; 



Unit – III      C Programming   

St Joseph’s Degree & PG College  13 
 

 
   /*Array variable declaration*/ 
   int val[7] = { 11, 22, 33, 44, 55, 66, 77 } ; 
 
/*Pointer variable initialization */    
p = &val[0]; 
 
   for ( int i = 0 ; i<7 ; i++ ) 
   { 
      printf("val[%d]: value is %d and address is %p \n", i, *p, p); 
       
      p++; 
   } 
   return 0; 
} 

Output: 
val[0]: value is 11 and address is 0x7fff51472c30 
val[1]: value is 22 and address is 0x7fff51472c34 
val[2]: value is 33 and address is 0x7fff51472c38 
val[3]: value is 44 and address is 0x7fff51472c3c 
val[4]: value is 55 and address is 0x7fff51472c40 
val[5]: value is 66 and address is 0x7fff51472c44 
val[6]: value is 77 and address is 0x7fff51472c48 
 
Points to Note: 
1) While using pointers with array, the data type of the pointer must match with the data type of 
the array. 
2) You can also use array name to initialize the pointer like this: 
p = var; 
because the array name alone is equivalent to the base address of the array. 
val==&val[0]; 
3) In the loop the increment operation(p++) is performed on the pointer variable to get the next 
location (next element’s location), this arithmetic is same for all types of arrays (for all data types 
double, char, int etc.) even though the bytes consumed by each data type is different. 
 
 
Pointers and two dimensional Arrays: In a two dimensional array, we can access each element 
by using two subscripts, where first subscript represents the row number and second subscript 
represents the column number. The elements of 2-D array can be accessed with the help of 
pointer notation also. Suppose arr is a 2-D array, we can access any element arr[i][j] of the array 
using the pointer expression *(*(arr + i) + j). Now we’ll see how this expression can be derived. 
Let us take a two dimensional array arr[3][4]: 



Unit – III      C Programming   

St Joseph’s Degree & PG College  14 
 

int arr[3][4] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} }; 

 
The following figure shows how the above 2-D array will be stored in memory. 

 
Each row can be considered as a 1-D array, so a two-dimensional array can be considered as a 
collection of one-dimensional arrays that are placed one after another. 

We know that the name of an array is a constant pointer that points to 0th 1-D array and 
contains address 5000. Since arr is a ‘pointer to an array of 4 integers’, according to pointer 
arithmetic the expression arr + 1 will represent the address 5016 and expression arr + 2 will 
represent address 5032. 
So we can say that arr points to the 0th 1-D array, arr + 1 points to the 1st 1-D array and arr + 
2 points to the 2nd 1-D array. 

 

 
 

arr + i  Points to ith element of arr -> Points to ith 1-D array 

• Since arr + i points to ith element of arr, on dereferencing it will get ith element of arr which 
is of course a 1-D array. Thus the expression *(arr + i) gives us the base address of ith 1-D 
array. 

• We know, the pointer expression *(arr + i) is equivalent to the subscript expression arr[i]. 
So *(arr + i) which is same as arr[i] gives us the base address of ith 1-D array. 

 



Unit – III      C Programming   

St Joseph’s Degree & PG College  15 
 

 

• To access an individual element of our 2-D array, we should be able to access any jth element 
of ith 1-D array. 

• Since the base type of *(arr + i) is int and it contains the address of 0th element of ith 1-D 
array, we can get the addresses of subsequent elements in the ith 1-D array by adding integer 
values to *(arr + i). 

• For example *(arr + i) + 1 will represent the address of 1st element of 1stelement of ith 1-D 
array and *(arr+i)+2 will represent the address of 2nd element of ith 1-D array. 

• Similarly *(arr + i) + j will represent the address of jth element of ith 1-D array. On 
dereferencing this expression we can get the jth element of the ith 1-D array. 

 

 

 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  1 
 

Unit – IV  

Functions: Introduction, types of functions, built-in Functions-String Functions, Date Functions. 

User-defined functions: Introduction, Elements of Functions-Function Declaration, function definition, 

function calls, Parameter Passing-call by value and call by reference, Recursion, Passing arrays to 

functions. 

______________________________________________________________________________ 

Functions 

Introduction 

 It is possible to code any program using main function, but it may become too large and 

complex and as a result, the task of debugging, testing and maintaining becomes difficult. If a 

program is divided into functional parts, then each part may be independently coded and later 

combined into a single unit. These sub programs called functions, which are much easier to 

understand, debug and test. 

A function is a self-contained block of one or more statements that perform a particular 

task. Every C program can be thought of as a collection of these functions, and one of which 

must be main( ) function.  

 The execution of the program always starts and ends with main function and main 

function can call other functions. A called function can receive control from a calling function, 

when the called function completes its execution it returns the control back to the calling 

function. The communication between calling function and called function is by passing 

parameters at the time of calling.  

 

Advantages of functions: 

• It facilitates top-down modular programming; here the problem can be factored into 
understandable and manageable steps. 

• Reusing of the code: The length of the source program can be reduced by using functions 
at appropriate places. i.e writing functions avoids rewriting of same code over and over.  

• Using functions, it becomes easier to write programs and keep track of what they are 
doing. 

• The functions are much easier to understand and test. 

• C comes with rich and valuable set of library functions that makes programmer’s work 
easier.  



C Programming  Unit - IV 

St Joseph’s Degree & PG College  2 
 

 

Types of functions: 

C functions can be classified into two categories. 

• Library functions (built-in functions) 

• User-defined functions 
  

The main distinction between these two categories is that library functions are not required to 

be written by the user where as a user-defined function has to be developed by the user at the 

time of writing a program.  

Library function User defined functions 

Library function are pre-defined functions User defined functions are the function which 

are created by user as per the requirement. 

Library function are part of header file User defined functions are part of a program  

In Library function, the name of function is 

given by the developers 

In User defined functions, the name of 

function is decided by the user. 

In Library function, name of function 

cannot be changed. 

Example : SIN, COS, Power 

In User defined function, name of function 

can be changed any time 

Example : fibo, add 

Examples: printf(),scanf(),sqrt(),strcat() 

etc.., 

Examples: main(), Add(),Sub(),Mul() etc.., 

 

 
Built-in functions or Library functions: we have various library functions categorized as 

mathematical functions, date functions, I/O functions, string handling functions conversion 

functions etc., but here we will have date functions and string functions. 

 
➢ String functions: 
A string is an array of characters. (Or) A string is a one-dimensional array of characters 

terminated by a null character (‘\0’). 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  3 
 

Eg:   “INDIA” “WELCOME”   

Each character of the string occupies one-byte of memory. The characters of the string are 

stored in contiguous memory locations. 

Declaration and Initialization of Strings: -  

Syntax: char string-name [size]; 

Eg:  char  city [20]; 

Character arrays (strings) may be initializing when they are declared (compile time initialization). 

Eg:   

• We can initialize a character array as element by element and last character should be 
the null character. 

char city [10] = { ‘H’, ‘Y’, ‘D’, ‘E’, ‘R’, ‘A’, ‘B’, ‘A’, ‘D’, ‘\0’ } ;  

• We can initialize a character array as total string at a time. 
char city [10] = “HYDERABAD”; 

• We can initialize a character array without specifying the size, the compiler automatically 
determines the size. 

char city [  ] = “HYDERABAD”; 

The memory representation of this character array is as follows: 

 0   1      2         3  4    5       6  7   8     9  

H Y D E R A B A D \0 

 

Reading Strings: -  

➢ The input function scanf ( ) can be used with %s format specification to read a string. 
Eg:  char name[30]; 

  scanf(“%s”, name); 

➢ The scanf() function to read multi word strings is doesn’t consider white spaces. It terminates 
the input string at first occurrence of white space. So multi word strings can’t read by using 
scanf() function. 

Eg:   char  city[30]; 

  scanf(“%s”, city); 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  4 
 

If the input string is “NEW DELHI”, then the variable city can store only “NEW”, it ignores the 

rest because white space is occurred after NEW. 

➢ To read multi word strings, we can use gets( ) function  
Eg:  char  city[20]; 

  gets(city); 

➢ To print strings, we can use either gets( ) function or printf function. 
Eg:  char  city[20]; 

  gets(city); 

  puts(city); 

String handling functions: - Operators can’t work with strings directly. So to manipulate strings 

we have a large number of string handling functions in C standard library and the responsible 

header file is “string.h”. Some of those functions are: 

String 

functions Description 

strcat ( )  Concatenates str2 at the end of str1 

strncat ( )  Appends a portion of string to another 

strcpy ( )  Copies str2 into str1 

strncpy ( )  

Copies given number of characters of one string to 

another 

strlen ( )  Gives the length of str1 

strcmp ( )  

Returns 0 if str1 is same as str2. Returns <0 if strl < 

str2. Returns >0 if str1 > str2 

http://fresh2refresh.com/c/c-strings/c-strcat-function/
http://fresh2refresh.com/c/c-strings/c-strncat-function/
http://fresh2refresh.com/c/c-strings/c-strcpy-function/
http://fresh2refresh.com/c/c-strings/c-strncpy-function/
http://fresh2refresh.com/c/c-strings/c-strlen-function/
http://fresh2refresh.com/c/c-strings/c-strcmp-function/


C Programming  Unit - IV 

St Joseph’s Degree & PG College  5 
 

strcmpi ( )  

Same as strcmp() function. But, this function negotiates 

case.  “A” and “a” are treated as same. 

strstr ( )  Returns pointer to first occurrence of str2 in str1 

strrstr ( )  Returns pointer to last occurrence of str2 in str1 

strlwr ( )  Converts string to lowercase 

strupr ( )  Converts string to uppercase 

strrev ( )  Reverses the given string 

strtok ( )  Tokenizing given string using delimiter 

 

1. strcpy( ):- It is to copy one string into another, and it returns the resultant string. 
Syntax: strcpy ( string1, string2); 

String2 is copied into string1. 

Eg:  char  city1[10] = “HYDERABAD”; 

  char  city2[12] = “BANGLORE”; 

  strcpy (city1, city2); 

Here city2 is copied into city1. So city1= “BANGLORE” and city2=” BANGLORE”. The size of the 

array city1 should be large enough to receive the contents of city2. 

 

2. strcmp( ):- It is to compare two strings to check their equality. If they are equal it 
returns zero, otherwise it returns the numeric difference between the first non-matching 
characters in the strings. (i.e. +ve if first one is greater, -ve if first one is lesser). 

 

http://fresh2refresh.com/c/c-strings/c-strcmpi-function/
http://fresh2refresh.com/c/c-strings/c-strstr-function/
http://fresh2refresh.com/c/c-strings/c-strrstr-function/
http://fresh2refresh.com/c/c-strings/c-strlwr-function/
http://fresh2refresh.com/c/c-strings/c-strupr-function/
http://fresh2refresh.com/c/c-strings/c-strrev-function/
http://fresh2refresh.com/c/c-strings/c-strtok-function/


C Programming  Unit - IV 

St Joseph’s Degree & PG College  6 
 

Syntax: strcmp (string1, string2); 

Eg:  char  city1[10] = “HYDERABAD”; 

  char  city2[12] = “BANGLORE”; 

  strcpy (city1, city2); 

Here city1 and city2 are compared, and returns the numeric difference between ASCII value of 

‘H’ and ASCII value of ‘B’ as they are not equal. 

  Strcmp(“RAM”,ROM”);  It returns some –ve value. 

  Strcmp(“RAM”,RAM”):  It returns 0 as they are equal. 

 

3. strcat ( ):- This function  is used to join two strings together, and it returns the resultant 
string. 

 

Syntax: strcat ( string1, string2); 

String1 is appended with string2 by removing the null character of string1 and string2 remains 

unchanged. The resultant string is stored in string1. 

Eg:  char  city1[10] = “HELLO”; 

  char  city2[12] = “WORLD”; 

  strcat (city1, city2); 

Here city2 is appended to city1. So city1= “HELLOWORLD” and city2=”WORLD”. 

 

4. strlen( ):- It is to find out the length of the given string and it returns an integer value, that is 
the number of characters in the given string. It takes only one parameter 

 

Syntax: strlen ( string1); 

It gives the length of string1. 

 

Eg:  char  city[10] = “HYDERABAD”; 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  7 
 

  strlen (city);  it gives the value 9. 

5. strrev ( ):- This function is to find out the reverse of a given string. 
 

Syntax: strrev (string); 

Eg:  char  city[10] = “HYDERABAD”; 

  strrev (city);  it give the string “DABAREDYH” 

 

Sample program using various string functions 

#include <stdio.h> 
#include <string.h> 
void  main() 
{ 
  char s1[10] = "Hello"; 
  char s2[10] = "World"; 

printf("Length of string s1: %d", strnlen(s1)); 
printf("Concatenation using strncat: %s", strncat(s1,s2, 3)); 
printf("Output string after concatenation: %s",strcat(s1,s2)); 
printf("String s1 is: %s", strcpy(s1,s2)); 
printf("String s1 is: %s", strncpy(s1,s2,3)); 

 
getch(); 

} 
 
 

 

 

 

 

 

 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  8 
 

 

Date Functions: 

The C date and time functions are a group of functions in the standard library of the C 

programming language implementing date and time manipulation operations. 

S.no Function Description 

1 setdate() This function used to modify the system date 

2 getdate() This function is used to get the CPU time 

3 clock() This function is used to get current system time 

4 time() This function is used to get current system time as structure 

5 difftime() This function is used to get the difference between two given times 

6 strftime() This function is used to modify the actual time format 

7 mktime() This function interprets tm structure as calendar time 

8 localtime() This function shares the tm structure that contains date and time 

information. 

9 gmtime() This function shares the tm structure that contains date and time 

information. 

10 ctime() This function is used to return string that contains date and time 

information 

 

 

https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)


C Programming  Unit - IV 

St Joseph’s Degree & PG College  9 
 

Note: This programs are run in TurboC/C++ compiler 

 
// C program to demonstrate setdate() and getdate() methods 
#include <dos.h>  
#include <stdio.h>  
int main()  
{  
    struct date dt;  
   
    // This function is used to get system's current date  
    getdate(&dt);  
   
    printf("System's current date\n");  
    printf("%d/%d/%d", dt.da_day, dt.da_mon, dt.da_year);  
   
    printf("Enter date in the format (date month year)\n");  
    scanf("%d%d%d", &dt.da_day, &dt.da_mon, &dt.da_year);  
   
    // This function is used to change system's current date  
    setdate(&dt);  
   
    printf("System's new date (dd/mm/yyyy)\n")  
    printf("%d%d%d", dt.da_day, dt.da_mon, dt.da_year);  
   
    return 0;  
}  
Output 

 

 
 
EXAMPLE PROGRAM FOR TIME() FUNCTION IN C. This function is used to get current system 
time as structure. 

 
#include <stdio.h> 
#include <time.h> 
int main () 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  10 
 

{ 
    time_t seconds; 
    seconds = time (NULL); 
  
    printf ("Number of hours since 1970 Jan 1st is %ld \n", seconds/3600); 
    return 0; 
} 
 
OUTPUT: 

Number of hours since 1970 Jan 1st is 374528 

 
 
 
User-defined functions: - 

 It is possible to code any program utilizing only main function, but it may become too 

large and complex and as a result, the task of debugging, testing and maintaining becomes 

difficult. If a program is divided into functional parts, then each part may be independently 

coded and later combined into a single unit. These sub programs called functions are much 

easier to understand, debug and test. These are defined by the user according to the 

requirement in the application. The user can modify and can create any number of functions 

based on requirement. The user can certainly understand the internal working of the function. 

The syntax of C user-defined function: 
 

return-type function-name (type arg1, type arg2, …...) 

{ 

     local variable declarations; 

     executable statement1; 

     executable statement2; 

    return statement; 

} 

➢ A function declaration tells the compiler about a function's name, return type, and 

parameters. A function definition provides the actual body of the function. A function can 

also be referred as a method or a sub-routine or a procedure, etc. 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  11 
 

➢ A function definition in C programming consists of a function header and a function 

body. Here are all the parts of a function − 

➢ Return Type − A function may return a value. The return-type is the data type of the 

value the function returns. Some functions perform the desired operations without 

returning a value. In this case, the return-type is the keyword void. 

➢ Function Name − this is the actual name of the function. The function name and the 

parameter list together constitute the function signature. 

➢ Parameters − A parameter is like a placeholder. When a function is invoked, you pass a 

value to the parameter. This value is referred to as actual parameter or argument. The 

parameter list refers to the type, order, and number of the parameters of a function. 

Parameters are optional; that is, a function may contain no parameters. 

➢ Function Body − the function body contains a collection of statements that define what 

the function does. 

➢ The return is a keyword which is followed by some expression or value. The return 
statement returns a value to the calling function and is optional. When there is no return 
statement, then no value is being returned to the calling function. We can return only 
one value at a time. 

 
Example: 

Given below is the source code for a function called max(). This function takes two 
parameters num1 and num2 and returns the maximum value between the two − 
 
/* function returning the max between two numbers */ 
int max(int num1, int num2) { 

 

   /* local variable declaration */ 

   int result; 

  

   if (num1 > num2) 

      result = num1; 

   else 

      result = num2; 

  

   return result;  

} 

 
Function Declarations 

A function declaration tells the compiler about a function name and how to call the 

function. The actual body of the function can be defined separately. 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  12 
 

 

A function declaration has the following parts − 

return_type function_name (parameter list); 

 

For the above defined function max(), the function declaration is as follows − 

int max(int num1, int num2); 

 

Parameter names are not important in function declaration only their type is required, so the 

following is also a valid declaration − 

int max(int, int); 

 

Function declaration is required when you define a function in one source file and you call that 

function in another file. In such case, you should declare the function at the top of the file calling 

the function. 

 

Function Calling (Calling a Function): 

While creating a C function, you give a definition of what the function has to do. To use a 

function, you will have to call that function to perform the defined task. 

When a program calls a function, the program control is transferred to the called 

function. A called function performs a defined task and when its return statement is executed or 

when its function-ending closing brace is reached, it returns the program control back to the 

main program. 

To call a function, you simply need to pass the required parameters along with the 

function name, and if the function returns a value, then you can store the returned value. For 

example – 

 
#include <stdio.h> 
  
/* function declaration */ 
int max(int num1, int num2); 
  
int main () { 
 
   /* local variable definition */ 
   int a = 100; 
   int b = 200; 
   int ret; 
  
   /* calling a function to get max value */ 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  13 
 

   ret = max(a, b); 
  
   printf( "Max value is : %d\n", ret ); 
  
   return 0; 
} 
  
/* function returning the max between two numbers */ 
int max(int num1, int num2) { 
 
   /* local variable declaration */ 
   int result; 
  
   if (num1 > num2) 
      result = num1; 
   else 
      result = num2; 
  
   return result;  
} 
 
 

Forms of Functions- A function depending on whether the arguments are present or not, and 

a value is returned or not may belong to one of the following categories. 

1. Functions without arguments and without return values. 

2. Functions with arguments and without return values. 

3. Functions without arguments and with return values. 

4. Functions with arguments and with return values. 

 

1. Functions without arguments and without return values: -   

• When a function has no arguments, it does not receive any data from calling function. 

• When a function does not return any value, the calling function doesn’t receive any 
data from called function. 

• There is no data transfer in between the calling function and called function. 
Eg:  #include<stdio.h> 
  void main( ) 
  { 
   clrscr( );   



C Programming  Unit - IV 

St Joseph’s Degree & PG College  14 
 

 
   displayline( ); 
   message( ); 
   displayline( ); 

 
   getch( ); 
  } 
  displayline( ) // no arguments and no return type for displayline 
  { 
   int i; 
   for(i=1; i<=80; i++) 
    printf(“-“); 
   printf(“\n”); 
  } 
  message( ) 
  { 
   printf(“ ***** COME TO LEARN **** \n ”); 
   printf(“ *****  GO TO SERVE ***** \n ”); 
  } 
 
OUTPUT:-  --------------------------------------------------------------------------- 
    ***** COME TO LEARN ***** 
     ***** GO TO SERVE ***** 
   --------------------------------------------------------------------------- 
 
2. Functions with arguments and without return values: - 

 

• The nature of data communication between the calling function and the called 
function is with arguments but no return values. 

• One-way data communication between calling function and called function through 
arguments.  

• The control is transferred to the called function by passing some arguments, after 
performing the task; the control is back to the calling function without returning any 
value. 

 
3. Functions without arguments and with return values: - 
 

• The function is called without passing any arguments, but after performing the task, it 
returns some value to the calling function. 

• One-way data communication between calling function and called function through 
return statement. 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  15 
 

• The control is transferred to the called function without passing any arguments, after 
performing the task; the control is back to the calling function by passing some value. 

 
Eg:   #include<stdio.h> 
  void main( ) 
  { 
   int f; 
   clrscr( );   
 
   f = factorial( ); 
   printf(“ \n Factorial f = %d”, f); 

   getch( ); 
  } 
  int factorial( ) // without  arguments, but returns some value. 
  { 
   int i, f =1,n; 
   printf(“ enter a value “); 
   scanf(“%d”, &n); 
   for(i=1; i<=n; i++) 
    f= f * i ; 
   return f; 
  } 
 
OUTPUT:-  enter a value  4 
   Factorial f = 24 
 
4. Functions with arguments and with return values: - 
 

• Two-way data communication between calling function and called function is by passing 
arguments and sending back some value. 

• The control is transferred to the called function by passing some arguments, after 
performing the task; the control is back to the calling function by returning some value. 

• At the time of function calling the actual arguments are dumped into formal arguments. 
 
Eg:   #include<stdio.h> 
  void main( ) 
  { 
   int n, f; 
   int factorial(int);   // function declaration or prototyping 
   clrscr( );   

 
   printf(“ enter a value “); 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  16 
 

   scanf(“%d”, &n); 
    f = factorial (n);  // function calling statement 
   printf(“ \n Factorial f = %d”, f); 

   getch( ); 
  } 
  int factorial( int x)  // function definition with argument, with return value. 
  { 
   int i, f =1; 
    
   for(i=1; i<=x; i++) 
    f= f * i; 
   return f; 
  } 
 
OUTPUT:-  enter a value  4 
   Factorial f = 24 
 

Recursion: - 
 

• When a function calls itself, then that process is called as recursion and that function is 
called as recursive function. 

• Recursive functions can be used to solve problems where the solution is expressed in 
terms of successively applying the same solution to subsets of the problems. 

• Every recursive functions must has to have two basic properties: 
 (i) A termination condition called anchor step (usually if statement) to avoid infinite 

process. (ii)  A repetition statement called recurrence step to repeat the function calling 

process.   

• Recursion is of two types. Direct recursion and indirect recursion. 

• When a function calls itself, then it is direct recursion. But when function-1 calls function-
2 and in turn function-2 calls function-1 then it is indirect recursion. 
 

Eg:  To calculate the factorial value of number 4, the recursion process is as follows. 

  void main( ) 
  { 
   int n, f; 
   int factorial(int);  // function declaration or prototyping 
   clrscr( );   

   n = 4; 
   f = factorial (n);  // function calling statement 
   printf(“ \n Factorial f = %d”, f); 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  17 
 

   getch( ); 
  } 
  int factorial( int x) // function definition with argument, with return value. 
  { 
   int f; 
    if( (x = = 1) || (x = = 0))    
     return 1; 
    else 
     return (x * factorial ( x - 1) ); 
  } 
 
 
 
 
i.e  x * factorial ( x - 1) is processed as follows:  
 
   4   *   factorial( 3 ) 
    3   *    factorial ( 2 ) 
     2   *    factorial ( 1 ) 
                         1  
 
   4   *    3    *    2    *   1   =   24 
 

Parameter passing techniques: - 
 
  Parameter passing is a technique used to pass data to a function. Data are passed 
to a function using one of two techniques: pass by value (call by value) and pass by reference 
(call by reference).   
 
1. Call by value: -  

• In call by value mechanism a copy of the data is sent to the function. That is the 
values of actual arguments are being copied into formal arguments. And ensures that 
the original data in the calling function cannot be changed. 

• Memory is allocated temporarily for formal parameters and local variables. 

• Whatever the modifications are done for formal parameters will not affect the actual 
parameters. 

 
2. Call by Reference-  

• In call by reference mechanism the address of the data rather than a copy is sent to 
the function. That is the address of actual arguments is being passed into formal 
arguments. The called function can change the original data in the calling function. 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  18 
 

• When we pass the addresses, the receiving parameters should be pointers to hold 
these addresses. 

• Whatever the modifications are done for formal parameters will directly affect the 
actual parameters. 

• C language does not have a true call by reference and it is stimulated by call by 
address. 

Eg: 
  // program for call by value mechanism  
  #include<stdio.h> 
  #include<conio.h> 
  void main( ) 
  { 
   int a, b; 
   void swap(int, int);  // function declaration or prototyping 
   clrscr( );   

 
   printf(“ enter two values “); 

   scanf(“%d %d”, &a, &b); 
    swap(a, b);   // function calling statement 
   printf(“ Values after swap function call are: “); 
   printf(“ a=  %d \t b = %d ”, a, b); 

   getch( ); 
  } 
  void swap( int x, int y)  // function definition. 
  { 
   int temp; 
   
   temp = x; 
   x = y; 
    y = temp; 
  } 
 
OUTPUT:-  enter two values  10  20 

  Values after swap function call are: a = 10  b=20 
 
Here the copy of the actual data a, b is sent to formal parameters of swap function, in 
swap function these are swapped but the changes made to x, y are not affect the values 
of a, b in main function. Because the copy the data is sent but not original location. 
 

Eg:  // program for call by reference mechanism  
  #include<stdio.h> 
  #include<conio.h> 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  19 
 

  void main( ) 
  { 
   int a, b; 
   void swap(int, int);  // function declaration or prototyping 
   clrscr( );   

 
   printf(“ enter two values “); 

   scanf(“%d %d”, &a, &b); 
   swap(&a, &b);  // function calling statement 
   printf(“ Values after swap function call are: “); 
   printf(“ a=  %d \t b = %d ”, a, b); 

   getch( ); 
  } 
  void swap( int *x, int *y)  // function definition. 
  { 
   int temp; 
   
   temp = *x; 
   *x = *y; 
    *y = temp; 
  } 
 
OUTPUT:-  enter two values  10  20 

  Values after swap function call are:  a=20  b=10 
 
Here the address of the actual data (&a, &b) is sent to formal parameters ( *x, *y) of 
swap function, in swap function instead of creating temporary memory locations for x 
and y, the same memory locations of a, b referenced by x, y. So changes made to x, y are 
directly affects a, b in main function. So finally swapped values are stored in a, b . 
 

 
Passing Array to Function in C 
 
In C, when we pass an array to a function. In C, there are various general problems which 
requires passing more than one variable of the same type to a function. For example, consider a 
function which sorts the 10 elements in ascending order. Such a function requires 10 numbers 
to be passed as the actual parameters from the main function. Here, instead of declaring 10 
different numbers and then passing into the function, we can declare and initialize an array and 
pass that into the function. This will resolve all the complexity since the function will now work 
for any number of values. 
 
If you want to pass a single-dimension array as an argument in a function, you would have to 
declare a formal parameter in one of following three ways and all three declaration methods 



C Programming  Unit - IV 

St Joseph’s Degree & PG College  20 
 

produce similar results because each tells the compiler that an integer pointer is going to be 
received. Similarly, you can pass multi-dimensional arrays as formal parameters. 
 
Consider the following syntax to pass an array to the function. 

 

Function_name(arrayname); //passing array 

 

Methods to declare a function that receives an array as an argument 

There are 3 ways to declare the function which is intended to receive an array as an argument. 

First way: 

return_type function (type arrayname [])   

Declaring blank subscript notation [] is the widely used technique. 

Second way: 

return_type function (type arrayname[SIZE])   

Optionally, we can define size in subscript notation []. 

Third way: 

return_type function (type *arrayname)   

Example Program: passing an array to function 

 

#include<stdio.h>   

int minarray (int arr[], int size) 

{     

int min=arr[0];     

int i=0;     

for(i=1;i<size;i++) 

{     

if(min>arr[i]) 

{     

min=arr[i];     

}     

} //end of for     

return min;     

} //end of function     

     

int main () 

{       

int i=0, min=0;     

int numbers [] = {4,5,7,3,8,9}; //declaration of array     

   

min=minarray(numbers,6); //passing array with size     



C Programming  Unit - IV 

St Joseph’s Degree & PG College  21 
 

printf("minimum number is %d \n", min);     

return 0;   

}     

 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  1 

 

UNIT-V 

 

STRUCTURES AND UNIONS: Introduction, Definition of Structure, Declaring Structure Variable, 
Structure Initialization, Accessing Structure members, Structure Vs Unions, Enumerated Data types 
______________________________________________________________________________ 

 
STRUCTURES 

 
INTRODUCTION: 
 

Structures help to organize complex data in a more meaning way. It is a powerful concept that 

we may often need to use in our program design. 
 
Structure is a derived data type whose individual elements can have different data types. Thus 

a single structure might contain integer elements, floating–point elements and character elements. 
Pointers, arrays and other structures can also be included as elements within a structure. The 

individual structure elements are referred to as members.  
 
Definition: A structure is a sequenced collection of heterogeneous related data items that share a 
common name. Simply the structure is a collection of logically related elements of different data types.  

Or 
A structure provides a mechanism for packaging data of different data types. 
 
 
DEFINING & DECLARING A STRUCTURE: 
In defining a structure the following points has to be considered. 

• The keyword struct is used to declares a structure.  

• The structure is terminated with a semicolon. 

• While the entire definition is considered as a statement, each member is declared 
independently for its name and type in a separate statement inside the template. 

 
 
Declaring a Structure: 
The syntax of a structure may be defined as 

Struct structure_name 
{ 

datatype member 1;  

datatype member 2; 

datatype member 2; 

------------ 

datatypemember m; 
 }; 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  2 

 

In this declaration, struct is a required keyword; structure_name is a name that identifies 
structures. 

The individual members can be ordinary variables, pointers, arrays or other structures. The 
member names within a particular structure must be different from one another.  

 
For example: struct student 

 
{ 

 
intrno; 
char name [80]; 
float percent; 

 
}; 
 

 
DECLARING A STRUCTURE VARIABLE: 

After defining a structure format we can declare variables of that type. A structure variable 
declaration is similar to the declaration of variable of any other data types. It includes the following 
elements. 

1. The keyword struct 
2. The structure name. 
3. List of variable names separated by commas. 
4. A terminating semicolon. 

Method I:  
Struct tag_name var1, var2, …….,var n; 

Example: 
To declare the structure variable s1 and s2 as follows: 
 

struct student stu1, stu2; 
 
s1 and s2 are structure 00type variables whose composition is identified by the structure student. 
 
Method II:  
It is possible to combine the declaration of the structure composition with that of the structure 
variable as shown below. 
 

struct tag_name 
{ 

 
member 1; 

 
member 2; 
------- 
member m;  
} variable 1, variable 2 --------- variable n; 

 
Example: 

struct student 
 { 

 
int rno; 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  3 

 

char name [80]; 
float percent; 

 
}stu1,stu2; 

The s1, s2, are structure variables of type student. 
 
  
STRUTURE INITIALIZATION: 
 
Like any other data type, a structure variable can be initialized at compile time. To initialize structure 
variables we have use structure-variable & member using  ‘.’ Operator. 
 
Method I:  Direct initialization 

a) Struct _variable.member1=value; 
Struct _variable.member2=value; 
. 
. 
 

b) Struct tag_name var_name={val1, val2, ….., val n}; 
 
Example1:  
           struct student 

 { 
 

int rno; 
char name [20]; 
float percent; 

 
  }s1; 

a) 
s1.rno=101; 
s1.name=”Ramana”; 
s1.percent=88.8; 

 
b) 

struct student s1 = { 105,“ ravi”, 80.9}; 
 
Example2:  

 
struct Patient 
{ 
    float height; 
    int weight;   
    int age;  
}; 
 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  4 

 

struct Patient p1; 
a) 
p1.height = 180.75;     //initialization of each member separately 
p1.weight = 73; 
p1.age = 23; 
 
b) 
struct Patient p1 = { 180.75 , 73, 23 };    //initialization 
 

 
Method II: Runtime initialization 
 
Runtime initialization of a structure variable can be done by using scanf( ) statement. 
Eg:  struct Patient 

{ 
    float height; 
    int weight;   
    int age;  
}; 

 
 printf(“Enter the values for structure”); 
 Scanf(“%d%s%f”,&s1.rno, s1.name, &s1.percent); 
 
DECLARING STRUCTURE MEMBERS USING ARRAY: 
It is also possible to define an array of structure that is an array in which each element is a structure. 
The procedure is shown in the following example: 
 
struct student 
{ 

intrno; 
char name [20]; 
float percent; 

 
} stu [5]; 
 
In this declaration stu is a 5- element array of structures. 
It means each element of stu represents an individual student record. 
 
ACCESSING STRUCTURE MEMBERS: 
 

The members of a structure are usually processed individually, as separate entities. Therefore, 
we must be able to access the individual structure members. A structure member can be accessed by 
writing 

variable. member; 
 
E.g. if we want to print the detail of a member of a structure then we can write as 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  5 

 

    printf(“%s”, st.name); 
    printf(“%d”, st.rno)  and so on. 
 
Example program:  
// program on storing Student info using structures 
 
 #include<stdio.h> 
 struct student 
 { 
 intrno; 
 char name[50]; 
 float percentage; 
 }student1,student2; 
  
 void main() 
 { 
 printf("Enter student 1 details: RNO, NAME, PERCENTAGE:\n"); 
 scanf("%d%s%f",&student1.rno,&student1.name,&student1.percentage); 
  
 printf("Enter student 2 details: RNO, NAME, PERCENTAGE:\n"); 
 scanf("%d%s%f",&student2.rno,&student2.name,&student2.percentage); 
  
 printf("The student1 details are:\n"); 
 printf("%d\t%s\t%f",student1.rno,student1.name,student1.percentage); 
  
 printf("\n The student2 details are:\n"); 
 printf("%d\t%s\t%f",student2.rno,student2.name,student2.percentage); 
 } 
Output: 
Enter student 1 details: RNO, NAME, PERCENTAGE: 
10 
Sailaja 
85.5 
Enter student 2 details: RNO, NAME, PERCENTAGE: 
20 
Raj 
87.5 
The student1 details are: 
10            Sailaja       85.5 
The student2 details are: 
20            Raj                    87.5 
  
 
 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  6 

 

Array of Structure 

We can also declare an array of structure variables. in which each element of the array will represent 

a structure variable.  

Example : struct employee emp[5]; 

The below program defines an array emp of size 5. Each element of the array emp is of type Employee. 

#include<stdio.h> 

#include<conio.h> 

struct Employee 

{ 

    char ename[10]; 

    int sal; 

}; 

 

struct Employee emp[5]; 

void main() 

{ 

int i, j; 

    for(i = 0; i < 3; i++) 

    { 

        printf("\nEnter %dst Employee record:\n", i+1); 

        printf("\nEmployee name:\t"); 

        scanf("%s", emp[i].ename); 

        printf("\nEnter Salary:\t"); 

        scanf("%d", &emp[i].sal); 

    } 

    printf("\nDisplaying Employee record:\n"); 

    for(i = 0; i < 3; i++) 

    { 

        printf("\n Employee name is %s", emp[i].ename); 

        printf("\n Slary is %d", emp[i].sal); 

    } 

getch(); 

} 

 
 
 
 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  7 

 

UNIONS 
 
INTRODUCTION: 

Union, like structures, contains members whose individual data types may differ from one 
another. However, the all the members of a union share the same storage area within the computer’s 
memory, whereas each member within a structure is assigned its own unique storage area. Thus, 
unions are used to conserve memory. 
 
Definition: A union is a sequenced collection of heterogeneous related data items that share a 
common name but differs in memory allocation. Each member in structure owns its storage space 
whereas all the members of a union use same location.  
 
 
DECLARING A UNION: 
The syntax of a structure may be defined as 

Union union_name 
{ 

datatype member 1;  

datatype member 2; 
 

------------ 
member m; 
 }; 

In this declaration, union is a required keyword; union_name is a name that identifies union of this 
type. 
 
The individual members can be ordinary variables, pointers, arrays or other structures. The member 
names within a particular union must be distinct from one another, though a member name can be 
same as the name of a variable defined outside of the union.  
For example: 

union student 
 

{ 
intrno; 
char name [80]; 
float percent; 

 
}; 

  
Declaring a union variable: 
 
Method I:  
uniontag_name var1, var2, ……., var n; 
 
Example: 
To declare the union variable s1 and s2 as follows: 
 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  8 

 

union student s1, s2; 
 
s1 and s2 are union type variables whose composition is identified by the union student. 
 
Method II:  
It is possible to combine the declaration of the union composition with that of the union variable as 
shown below. 
 

uniontag_name 
{ 

 
member 1; 

 
member 2; 
------- 
member m;  

 
} variable 1, variable 2 --------- variable n; 

 
Example: 

union student 
 { 

 
intrno; 
char name [80]; 
float percent; 

 
} s1,s2; 

 
The s1, s2, are union variables of type student. 
 
ASSIGNING OR INITIALIZING VALUES: 
 
Method I:  
union _var. member=value; 
 
Example:  

s1.rno=101; 
s1.name=”ravi”; 
s1.percent=80.9; 

 
Method II:  
  
Uniontag_namevar_name={val1, val2, ….., val n}; 
 
Example:  
union student s1 = { 101,“ ravi”, 80.9}; 
 
 It is also possible to define an array of union that is an array in which each element is a union. 
The procedure is shown in the following example: 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  9 

 

 
union student 
{ 
 

intrno; 
char name [80]; 
float percent; 

 
} st [100]; 
 
In this declaration st is a 100- element array of union. 
 
It means each element of st represents an individual student record. 
 
ACCESSING A UNION: 
 
The members of a union are usually processed individually, as separate entities. Therefore, we must be 
able to access the individual union members. A union member can be accessed by writing 
 

variable.member; 
 
E.g. if we want to print the detail of a member of a union then wecan write as  
printf(“%s”, st.name);  
or 
printf(“%d”, st.rno)  
 
 
Example program: 
// Employee details using union 
 
#include <stdio.h> 
union employee 
{ 
 longintempid; 
 charempname[50]; 
 float salary; 
}emp; 
void main() 
{ 
  
 printf("\n\t Enter employee id : "); 
 scanf("%d", &emp.empid); 
 printf("\n\n Employee id : %d", emp.empid); 
 
 printf("\n\n\t Enter employee name : "); 
 scanf("%s", emp.empname); 
 printf("\n\n Employee name : %s", emp.empname); 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  10 

 

 
 printf("\n\n\t Enter employee salary : "); 
 scanf("%f", &emp.salary); 
 printf("\n\n Employee salary: %f", emp.salary); 
  
} 
 
 
DIFFERENCES BETWEEN STRUCTURE AND UNION: 
 

Structure Union 

A structure is a sequenced collection of 
heterogeneous related data items that share a 
common name. 
 

A union is a sequenced collection of 
heterogeneous related data items that share a 
common name but differs in memory 
allocation 

The keyword  struct  is used to define a 
structure 

The keyword union is used to define a union. 

Example structure declaration: 

struct student 

{ 

int rno; 

float percentage; 

}s; 

 

Example union declaration: 

union stu 

{ 

int rno; 

float percentage; 

}u; 

 

In Structures, the compiler   allocates the 
memory for each member i.e., The size of 
structure is greater than   or equal to the sum 
of sizes of its   members. 

In Union, the compiler allocates the memory 
by considering the size of the largest member 
memory i.e., size of union is equal to the size 
of largest member. 
 

Each member within a structure is assigned 
unique storage 

In union memory allocated is shared by 
individual members of union. 

In Structure, the address of each member will 
be in ascending order 

In unions the address is same for all the 
members of a union. 

In Structure, altering the value of a member 
will not affect other members of the   
structure. 
 

In union altering the value of any of the 
member will alter other member   values. 
 

 



C Programming  Unit -V 

 

St Joseph’s Degree & PG College  11 

 

Enumerated Data Types 
 
An enumerated type (also called enumeration or enum) is a data type consisting of a set of named 
values called elements, members or enumerators of the type. The enumerator names are usually 
identifiers that behave as constants in the language. A variable that has been declared as having an 
enumerated type can be assigned any of the enumerators as a value. 
 
enum identifier {value_1, value_2,…….., value_n}; 
 
Here the “identifier” is a user-defined enumerated data type which can be used to declare variables 
that can have one of the values enclosed within the braces. These values are known as enumerated 
constants.  
 
enum identifier v1, v2, …. vn; 
 
The enumerated variables v1, v2, …vn can only have one of the values value_1, value_2, …. value_n. 
 
The assignment of the following types are valid: 
 
    V1=value_3; 
    V5=value_1; 
 
 
An example: 
  enum day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}; 
  enum day week_start, week_end; 
   
  week_start= Monday; 
 
  week_end= Friday; 
 
   
The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants, i.e. 
value_1 assigned to 0, value_2 assigned to 1, and so on. However, the automatic assignments can be 
overridden by assigning values explicitly to the enumeration constants.  
For example:  
   Enum day {Monday=1, Tuesday, Wednesday, Thursday, Friday, Saturday}; 
 
Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values that 
increase successively by 1.  
 
 
Example Program: 
 
#include <stdio.h> 
void main() 

http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/Identifier
http://en.wikipedia.org/wiki/Constant_(programming)
http://en.wikipedia.org/wiki/Variable_(computer_science)
http://en.wikipedia.org/wiki/Declaration_(computer_science)


C Programming  Unit -V 

 

St Joseph’s Degree & PG College  12 

 

{ 
enum Days{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}; 
 
Days TheDay; 
 
int j = 0; 
printf("Please enter the day of the week (0 to 6)\n"); 
scanf("%d",&j); 
TheDay = Days(j); 
 
if (TheDay == Sunday || TheDay == Saturday) 
printf("It is the weekend\n"); 
else 
printf("It is the working day\n"); 
 
} 

 
 


