Instruction set of Microcontroller 8051

Data Transfer Instructions

Operation: MOV
Syntax: MOV destination, source

Description: MOV copies the value of source into destinatiolne Talue of source is

not affected. Both destination and source mustrbénternal RAM. No flags are

affected unless the instruction is moving the vaitia bit into the carry bit in which

case the carry bit is affected or unless the iotyn is moving a value into the PSW
register (which contains all the program flags).

Operation: MOVC
Function: Move Code Byte to Accumulator
Syntax: MOVC A,@A+register

Description: MOVC moves a byte from Code Memory into the Acclatar. The
Code Memory address from which the byte will be pubis calculated by summing
the value of the Accumulator with either DPTR oe #arogram Counter (PC). In the
case of the Program Counter, PC is first increntehtel before being summed with
the Accumulator.

Operation: MOVX
Function: Move Data To/From External Memory (XRAM)
Syntax: MOVX operandl,operand2

Description: MOVX moves a byte to or from External Memory imiofrom the
Accumulator.

If operandl is @DPTR, the Accumulator is moved to the 16-biteEnal Memory
address indicated by DPTR. This instruction usek B® (port 0) and P2 (port 2) to
output the 16-bit address and dateodérand2 is DPTR then the byte is moved from
External Memory into the Accumulator.

If operandl is @RO or @R1, the Accumulator is moved to thet&kternal Memory
address indicated by the specified Register. Tisgruction uses only PO (port 0) to
output the 8-bit address and data. P2 (port 2pisaffected. Ifoperand2 is @RO or
@RL1 then the byte is moved from External Memoryg thie Accumulator.

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 1
Autonomous, Affiliated Osmania University, AccrestitbyNAAC with Grade ‘A’.

Operation: SWAP
Function: Swap Accumulator Nibbles
Syntax: SWAP A

Description: SWAP swaps bits 0-3 of the Accumulator with bits7 4of the
Accumulator. This instruction is identical to exéog "RR A" or "RL A" four times.

Operation: XCH
Function: Exchange Bytes
Syntax: XCH A register

Description: Exchanges the value of the Accumulator with tHee/gaontained in
register.
Ex: XCH A, R1

Operation: PUSH
Function: Push Value Onto Stack
Syntax: PUSH

Description: PUSH "pushes” the value of the specifiedm addr onto the stack.
PUSH first increments the value of the Stack Poihtel, then takes the value stored
in iram addr and stores it in Internal RAM at the location peth to by the
incremented Stack Pointer.

Operation: POP
Function: Pop Value From Stack
Syntax: POP

Description: POP "pops" the last value placed on the stack th&iram addr
specified. In other words, POP will loadam addr with the value of the Internal
RAM address pointed to by the current Stack Poainidére stack pointer is then
decremented by 1.

Arithmetic Instructions

Operation: ADD, ADDC
Function: Add Accumulator, Add Accumulator With Carry

Description: Description: ADD and ADDC both add the valogerand to the value
of the Accumulator, leaving the resulting value the Accumulator. The value
operand is not affected. ADD and ADDC function identicaétxcept that ADDC adds
the value of operand as well as the value of theyGmg whereas ADD does not add
the Carry flag to the result.

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 2
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

Operation: SUBB
Function: Subtract from Accumulator With Borrow

Description: SUBB subtract the value operand from the value of the Accumulator,
leaving the resulting value in the Accumulator. Maéueoperand is not affected.

The Carry Bit (C) is set if a borrow was required for bit 7, othessvit is cleared. In
other words, if the unsigned value being subtractegreater than the Accumulator
the Carry Flag is set.

Operation: MUL
Function: Multiply Accumulator by B
Syntax: MUL AB

Description: Multiples the unsigned value of the Accumulatortbg unsigned value
of the "B" register. The least significant byte tfe result is placed in the
Accumulator and the most-significant-byte is placethe "B" register.

TheCarry Flag (C) is always cleared.

Operation: DIV
Function: Divide Accumulator by B
Syntax: DIV AB

Description: Divides the unsigned value of the Accumulator iy tinsigned value of
the "B" register. The resulting quotient is placed the Accumulator and the
remainder is placed in the "B" register.

TheCarry flag (C) is always cleared.

Operation: INC
Function: Increment Register
Syntax: INC register

Description: INC increments the value oégister by 1. If the initial value of egister
is 255 (OxFF Hex), incrementing the value will cautsto reset to 0. Note: The Carry
Flag is NOT set when the value "rolls over" fron526 0.

In the case of "INC DPTR", the value two-byte ungid integer value of DPTR is
incremented. If the initial value of DPTR is 655@%FFFF Hex), incrementing the
value will cause it to reset to 0. Again, the Cdftgig is NOT set when the value of
DPTR "rolls over" from 65535 to 0.

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 3
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

Operation: DEC
Function: Decrement Register
Syntax: DECregister

Description: DEC decrements the value ofgister by 1. If the initial value of
register is 0, decrementing the value will cause it to rése255 (OXFF Hex). Note:
The Carry Flag is NOT set when the value "rolisrbyem 0 to 255.

Logical Instructions

Operation: ORL
Function: Bitwise OR
Syntax: ORL operandl,operand2

Description: ORL does a bitwise "OR" operation betwemgerandl and operand2,
leaving the resulting value ioperandl. The value ofoperand2 is not affected. A
logical "OR" compares the bits of each operand setd the corresponding bit in the
resulting byte if the bit was set in either of theginal operands, otherwise the
resulting bit is cleared.

Operation: ANL
Function: Bitwise AND
Syntax: ANL operandl, operand?2

Description: ANL does a bitwise "AND" operation betweeperandl andoperand2,
leaving the resulting value ioperandl. The value of operand2 is not affected. A
logical "AND" compares the bits of each operand seid the corresponding bit in the
resulting byte only if the bit was set in both b&toriginal operands, otherwise the
resulting bit is cleared.

Operation: XRL
Function: Bitwise Exclusive OR
Syntax: XRL operandl,operand?2

Description: XRL does a bitwise "EXCLUSIVE OR" operation betwegperandl
andoperand2, leaving the resulting value wperandl. The value of operand2 is not
affected. A logical "EXCLUSIVE OR" compares theshdf each operand and sets the
corresponding bit in the resulting byte if the Was set in either (but not both) of the
original operands, otherwise the bit is cleared.

Operation: CPL
Function: Complement Register
Syntax: CPLoperand

Description: CPL complementsperand, leaving the result imperand. If operand is
a single bit then the state of the bit will be m=eel. If operand is the Accumulator

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 4
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

then all the bits in the Accumulator will be revents This can be thought of as
"Accumulator Logical Exclusive OR 255" or as "258emulator.” If theoperand
refers to a bit of an output Port, the value thditlve complemented is based on the
last value written to that bit, not the last vatead from it.

Operation: CLR
Function: Clear Register
Syntax: CLR register

Description: CLR clears (sets to 0) all the bit(s) of the irdex register. If the
register is a bit (including the carry bit), onhetspecified bit is affected. Clearing the
Accumulator sets the Accumulator's value to 0.

Operation: RL
Function: Rotate Accumulator Left
Syntax: RLA

Description: Shifts the bits of the Accumulator to the left.eTleft-most bit (bit 7) of
the Accumulator is loaded into bit O.

Operation: RR
Function: Rotate Accumulator Right
Syntax: RR A

Description: Shifts the bits of the Accumulator to the righhelright-most bit (bit 0)
of the Accumulator is loaded into bit 7.

Operation: RLC
Function: Rotate Accumulator Left Through Carry
Syntax: RLC A

Description: Shifts the bits of the Accumulator to the left.eTleft-most bit (bit 7) of
the Accumulator is loaded into the Carry Flag, #mel original Carry Flag is loaded
into bit O of the Accumulator. This function can lieed to quickly multiply a byte by
2.

Operation: RRC
Function: Rotate Accumulator Right Through Carry
Syntax: RRC A

Description: Shifts the bits of the Accumulator to the righh€elright-most bit (bit 0)
of the Accumulator is loaded into the Carry Flagg &he original Carry Flag is loaded
into bit 7. This function can be used to quicklyide a byte by 2.

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 5
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

Branching Instructions

Operation: JMP
Function: Jump to Data Pointer + Accumulator
Syntax: JMP @A+DPTR

Description: JMP jumps unconditionally to the address represehy the sum of the
value of DPTR and the value of the Accumulator.

Operation: JC
Function: Jump if Carry Set
Syntax: JCreladdr

Description: JC will branch to the address indicatedreladdr if the Carry Bit is set.
If the Carry Bit is not set program execution coags with the instruction following
the JC instruction.

Operation: JNC
Function: Jump if Carry Not Set
Syntax: JNCreladdr

Description: JNC branches to the address indicatedebgddr if the carry bit is not
set. If the carry bit is set program execution oargs with the instruction following
the JNB instruction.

Operation: DIJNZ
Function: Decrement and Jump if Not Zero
Syntax: DJNZregister,reladdr

Description: DINZ decrements the value ofgister by 1. If the initial value of
register is 0, decrementing the value will cause it to rése255 (OXFF Hex). If the
new value ofregister is not O the program will branch to the addresticated by
relative addr. If the new value ofregister is O program flow continues with the
instruction following the DINZ instruction.

Operation: CINE
Function: Compare and Jump If Not Equal
Syntax: CJNEoperandl,operand2,reladdr

Description: CINE compares the value gberandl andoperand2 and branches to
the indicated relative addressdperandl and operand2 are not equal. If the two
operands are equal program flow continues withinls&uction following the CINE
instruction.

Operation: JZ

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 6
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

Function: Jump if Accumulator Zero
Syntax: JNZreladdr

Description: JZ branches to the address indicatedrédgddr if the Accumulator
contains the value 0. If the value of the Accunuias non-zero program execution
continues with the instruction following the JNZiruction.

Operation: JNZ
Function: Jump if Accumulator Not Zero
Syntax: JNZreladdr

Description: JNZ will branch to the address indicatedrehaddr if the Accumulator
contains any value except 0. If the value of thecukeulator is zero program
execution continues with the instruction followitigg JNZ instruction.

Operation: SIMP
Function: Short Jump
Syntax: SJMPreladdr

Description: SIJMP jumps unconditionally to the address spetrigaddr. Reladdr
must be within -128 or +127 bytes of the instruetibat follows the SIJMP instruction.

Operation: LIMP
Function: Long Jump
Syntax: LIJMP code addr

Description: LIMP jumps unconditionally to the specifieatle addr.

Operation: AJMP
Function: Absolute Jump Within 2K Block
Syntax: AJMP code address

Description: AJMP unconditionally jumps to the indicatedde address. The new
value for the Program Counter is calculated bya@ph the least-significant-byte of
the Program Counter with the second byte of the RdMstruction, and replacing bits
0-2 of the most-significant-byte of the Program Gtewu with 3 bits that indicate the
pageof the byte following the AJMP instruction. Bits 3-7 of the most-significant-byte
of the Program Counter remain unchaged.

Since only 11 bits of the Program Counter are &by AJMP, jumps may only be
made to code located within the same 2k block aditst byte that follows AJMP.

Operation: LCALL
Function: Long Call

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 7
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

Syntax: LCALL code addr

Description: LCALL calls a program subroutine. LCALL incremerttse program
counter by 3 (to point to the instruction followib@ALL) and pushes that value onto
the stack (low byte first, high byte second). ThegPam Counter is then set to the 16-
bit value which follows the LCALL opcode, causinghgram execution to continue at
that address.

Operation: ACALL
Function: Absolute Call Within 2K Block
Syntax: ACALL code address

Description: ACALL unconditionally calls a subroutine at thelicatedcode address.
ACALL pushes the address of the instruction thdloves ACALL onto the stack,
least-significant-byte first, most-significant-bygecond. The Program Counter is then
updated so that program execution continues antheated address.

The new value for the Program Counter is calculabgdreplacing the least-
significant-byte of the Program Counter with thecas® byte of the ACALL
instruction, and replacing bits 0-2 of the mostagigant-byte of the Program Counter
with 3 bits that indicate the page. Bits 3-7 of thest-significant-byte of the Program
Counter remain unchaged.

Since only 11 bits of the Program Counter are &tbby ACALL, calls may only be
made to routines located within the same 2k blactha first byte that follows
ACALL.

Operation: RET
Function: Return From Subroutine
Syntax: RET

Description: RET is used to return from a subroutine previoesljed by LCALL or
ACALL. Program execution continues at the addrbas is calculated by popping the
topmost 2 bytes off the stack. The most-signifidayie is popped off the stack first,
followed by the least-significant-byte.

Operation: RETI
Function: Return From Interrupt
Syntax: RETI

Description: RETI is used to return from an interrupt serviceitne. RETI first
enables interrupts of equal and lower prioritieshe interrupt that is terminating.
Program execution continues at the address tlaicsilated by popping the topmost
2 bytes off the stack. The most-significant-byt@apped off the stack first, followed
by the least-significant-byte.

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 8
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

RETI functions identically to RET if it is executedtside of an interrupt service
routine.

Bit-Wise Instructions

Operation: JB
Function: Jump if Bit Set
Syntax: JBbit addr, reladdr

Description: JB branches to the address indicateddbgddr if the bit indicated by
bit addr is set. If the bit is not set program executiontoaes with the instruction
following the JB instruction.

Operation: JNB
Function: Jump if Bit Not Set
Syntax: JNBbit addr,reladdr

Description: JNB will branch to the address indicatedriebaddress if the indicated
bit is not set. If the bit is set program executicontinues with the instruction
following the JNB instruction.

Operation: JBC
Function: Jump if Bit Set and Clear Bit
Syntax: JBbit addr, reladdr

Description: JBC will branch to the address indicatedrbiaddr if the bit indicated
by bit addr is set. Before branching teladdr the instruction will clear the indicated
bit. If the bit is not set program execution con#s with the instruction following the
JBC instruction.

M.L.N.Rao, Asst. Prof. in Electronic§t. Joseph’s Degree & PG College Page 9
Autonomous, Affiliated Osmania University, AccretitbyNAAC with Grade ‘A’.

