
M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 1
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Instruction set of Microcontroller 8051

Data Transfer Instructions

Operation: MOV

Syntax: MOV destination, source

Description: MOV copies the value of source into destination. The value of source is
not affected. Both destination and source must be in Internal RAM. No flags are
affected unless the instruction is moving the value of a bit into the carry bit in which
case the carry bit is affected or unless the instruction is moving a value into the PSW
register (which contains all the program flags).

Operation: MOVC

Function: Move Code Byte to Accumulator

Syntax: MOVC A,@A+register

Description: MOVC moves a byte from Code Memory into the Accumulator. The
Code Memory address from which the byte will be moved is calculated by summing
the value of the Accumulator with either DPTR or the Program Counter (PC). In the
case of the Program Counter, PC is first incremented by 1 before being summed with
the Accumulator.

Operation: MOVX

Function: Move Data To/From External Memory (XRAM)

Syntax: MOVX operand1,operand2

Description: MOVX moves a byte to or from External Memory into or from the
Accumulator.

If operand1 is @DPTR, the Accumulator is moved to the 16-bit External Memory
address indicated by DPTR. This instruction uses both P0 (port 0) and P2 (port 2) to
output the 16-bit address and data. If operand2 is DPTR then the byte is moved from
External Memory into the Accumulator.

If operand1 is @R0 or @R1, the Accumulator is moved to the 8-bit External Memory
address indicated by the specified Register. This instruction uses only P0 (port 0) to
output the 8-bit address and data. P2 (port 2) is not affected. If operand2 is @R0 or
@R1 then the byte is moved from External Memory into the Accumulator.

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 2
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Operation: SWAP

Function: Swap Accumulator Nibbles

Syntax: SWAP A

Description: SWAP swaps bits 0-3 of the Accumulator with bits 4-7 of the
Accumulator. This instruction is identical to executing "RR A" or "RL A" four times.

Operation: XCH

Function: Exchange Bytes

Syntax: XCH A,register

Description: Exchanges the value of the Accumulator with the value contained in
register.
Ex: XCH A, R1

Operation: PUSH

Function: Push Value Onto Stack

Syntax: PUSH

Description: PUSH "pushes" the value of the specified iram addr onto the stack.
PUSH first increments the value of the Stack Pointer by 1, then takes the value stored
in iram addr and stores it in Internal RAM at the location pointed to by the
incremented Stack Pointer.

Operation: POP

Function: Pop Value From Stack

Syntax: POP

Description: POP "pops" the last value placed on the stack into the iram addr
specified. In other words, POP will load iram addr with the value of the Internal
RAM address pointed to by the current Stack Pointer. The stack pointer is then
decremented by 1.

Arithmetic Instructions

Operation: ADD, ADDC

Function: Add Accumulator, Add Accumulator With Carry

Description: Description: ADD and ADDC both add the value operand to the value
of the Accumulator, leaving the resulting value in the Accumulator. The value
operand is not affected. ADD and ADDC function identically except that ADDC adds
the value of operand as well as the value of the Carry flag whereas ADD does not add
the Carry flag to the result.

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 3
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Operation: SUBB

Function: Subtract from Accumulator With Borrow

Description: SUBB subtract the value of operand from the value of the Accumulator,
leaving the resulting value in the Accumulator. The value operand is not affected.

The Carry Bit (C) is set if a borrow was required for bit 7, otherwise it is cleared. In
other words, if the unsigned value being subtracted is greater than the Accumulator
the Carry Flag is set.

Operation: MUL

Function: Multiply Accumulator by B

Syntax: MUL AB

Description: Multiples the unsigned value of the Accumulator by the unsigned value
of the "B" register. The least significant byte of the result is placed in the
Accumulator and the most-significant-byte is placed in the "B" register.

The Carry Flag (C) is always cleared.

Operation: DIV

Function: Divide Accumulator by B

Syntax: DIV AB

Description: Divides the unsigned value of the Accumulator by the unsigned value of
the "B" register. The resulting quotient is placed in the Accumulator and the
remainder is placed in the "B" register.

The Carry flag (C) is always cleared.

Operation: INC

Function: Increment Register

Syntax: INC register

Description: INC increments the value of register by 1. If the initial value of register
is 255 (0xFF Hex), incrementing the value will cause it to reset to 0. Note: The Carry
Flag is NOT set when the value "rolls over" from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is
incremented. If the initial value of DPTR is 65535 (0xFFFF Hex), incrementing the
value will cause it to reset to 0. Again, the Carry Flag is NOT set when the value of
DPTR "rolls over" from 65535 to 0.

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 4
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Operation: DEC

Function: Decrement Register

Syntax: DEC register

Description: DEC decrements the value of register by 1. If the initial value of
register is 0, decrementing the value will cause it to reset to 255 (0xFF Hex). Note:
The Carry Flag is NOT set when the value "rolls over" from 0 to 255.

Logical Instructions

Operation: ORL

Function: Bitwise OR

Syntax: ORL operand1,operand2

Description: ORL does a bitwise "OR" operation between operand1 and operand2,
leaving the resulting value in operand1. The value of operand2 is not affected. A
logical "OR" compares the bits of each operand and sets the corresponding bit in the
resulting byte if the bit was set in either of the original operands, otherwise the
resulting bit is cleared.

Operation: ANL

Function: Bitwise AND

Syntax: ANL operand1, operand2

Description: ANL does a bitwise "AND" operation between operand1 and operand2,
leaving the resulting value in operand1. The value of operand2 is not affected. A
logical "AND" compares the bits of each operand and sets the corresponding bit in the
resulting byte only if the bit was set in both of the original operands, otherwise the
resulting bit is cleared.

Operation: XRL

Function: Bitwise Exclusive OR

Syntax: XRL operand1,operand2

Description: XRL does a bitwise "EXCLUSIVE OR" operation between operand1
and operand2, leaving the resulting value in operand1. The value of operand2 is not
affected. A logical "EXCLUSIVE OR" compares the bits of each operand and sets the
corresponding bit in the resulting byte if the bit was set in either (but not both) of the
original operands, otherwise the bit is cleared.

Operation: CPL

Function: Complement Register

Syntax: CPL operand
Description: CPL complements operand, leaving the result in operand. If operand is
a single bit then the state of the bit will be reversed. If operand is the Accumulator

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 5
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

then all the bits in the Accumulator will be reversed. This can be thought of as
"Accumulator Logical Exclusive OR 255" or as "255-Accumulator." If the operand
refers to a bit of an output Port, the value that will be complemented is based on the
last value written to that bit, not the last value read from it.

Operation: CLR

Function: Clear Register

Syntax: CLR register

Description: CLR clears (sets to 0) all the bit(s) of the indicated register. If the
register is a bit (including the carry bit), only the specified bit is affected. Clearing the
Accumulator sets the Accumulator's value to 0.

Operation: RL

Function: Rotate Accumulator Left

Syntax: RL A

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of
the Accumulator is loaded into bit 0.

Operation: RR

Function: Rotate Accumulator Right

Syntax: RR A

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit 0)
of the Accumulator is loaded into bit 7.

Operation: RLC

Function: Rotate Accumulator Left Through Carry

Syntax: RLC A

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7) of
the Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded
into bit 0 of the Accumulator. This function can be used to quickly multiply a byte by
2.

Operation: RRC

Function: Rotate Accumulator Right Through Carry

Syntax: RRC A

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit 0)
of the Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded
into bit 7. This function can be used to quickly divide a byte by 2.

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 6
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Branching Instructions

Operation: JMP

Function: Jump to Data Pointer + Accumulator

Syntax: JMP @A+DPTR

Description: JMP jumps unconditionally to the address represented by the sum of the
value of DPTR and the value of the Accumulator.

Operation: JC

Function: Jump if Carry Set

Syntax: JC reladdr

Description: JC will branch to the address indicated by reladdr if the Carry Bit is set.
If the Carry Bit is not set program execution continues with the instruction following
the JC instruction.

Operation: JNC

Function: Jump if Carry Not Set

Syntax: JNC reladdr

Description: JNC branches to the address indicated by reladdr if the carry bit is not
set. If the carry bit is set program execution continues with the instruction following
the JNB instruction.

Operation: DJNZ

Function: Decrement and Jump if Not Zero

Syntax: DJNZ register,reladdr

Description: DJNZ decrements the value of register by 1. If the initial value of
register is 0, decrementing the value will cause it to reset to 255 (0xFF Hex). If the
new value of register is not 0 the program will branch to the address indicated by
relative addr. If the new value of register is 0 program flow continues with the
instruction following the DJNZ instruction.

Operation: CJNE

Function: Compare and Jump If Not Equal

Syntax: CJNE operand1,operand2,reladdr

Description: CJNE compares the value of operand1 and operand2 and branches to
the indicated relative address if operand1 and operand2 are not equal. If the two
operands are equal program flow continues with the instruction following the CJNE
instruction.

Operation: JZ

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 7
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Function: Jump if Accumulator Zero

Syntax: JNZ reladdr

Description: JZ branches to the address indicated by reladdr if the Accumulator
contains the value 0. If the value of the Accumulator is non-zero program execution
continues with the instruction following the JNZ instruction.

Operation: JNZ

Function: Jump if Accumulator Not Zero

Syntax: JNZ reladdr

Description: JNZ will branch to the address indicated by reladdr if the Accumulator
contains any value except 0. If the value of the Accumulator is zero program
execution continues with the instruction following the JNZ instruction.

Operation: SJMP

Function: Short Jump

Syntax: SJMP reladdr

Description: SJMP jumps unconditionally to the address specified reladdr. Reladdr
must be within -128 or +127 bytes of the instruction that follows the SJMP instruction.

Operation: LJMP

Function: Long Jump

Syntax: LJMP code addr

Description: LJMP jumps unconditionally to the specified code addr.

Operation: AJMP

Function: Absolute Jump Within 2K Block

Syntax: AJMP code address

Description: AJMP unconditionally jumps to the indicated code address. The new
value for the Program Counter is calculated by replacing the least-significant-byte of
the Program Counter with the second byte of the AJMP instruction, and replacing bits
0-2 of the most-significant-byte of the Program Counter with 3 bits that indicate the
page of the byte following the AJMP instruction. Bits 3-7 of the most-significant-byte
of the Program Counter remain unchaged.

Since only 11 bits of the Program Counter are affected by AJMP, jumps may only be
made to code located within the same 2k block as the first byte that follows AJMP.

Operation: LCALL

Function: Long Call

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 8
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

Syntax: LCALL code addr

Description: LCALL calls a program subroutine. LCALL increments the program
counter by 3 (to point to the instruction following LCALL) and pushes that value onto
the stack (low byte first, high byte second). The Program Counter is then set to the 16-
bit value which follows the LCALL opcode, causing program execution to continue at
that address.

Operation: ACALL

Function: Absolute Call Within 2K Block

Syntax: ACALL code address

Description: ACALL unconditionally calls a subroutine at the indicated code address.
ACALL pushes the address of the instruction that follows ACALL onto the stack,
least-significant-byte first, most-significant-byte second. The Program Counter is then
updated so that program execution continues at the indicated address.

The new value for the Program Counter is calculated by replacing the least-
significant-byte of the Program Counter with the second byte of the ACALL
instruction, and replacing bits 0-2 of the most-significant-byte of the Program Counter
with 3 bits that indicate the page. Bits 3-7 of the most-significant-byte of the Program
Counter remain unchaged.

Since only 11 bits of the Program Counter are affected by ACALL, calls may only be
made to routines located within the same 2k block as the first byte that follows
ACALL.

Operation: RET

Function: Return From Subroutine

Syntax: RET

Description: RET is used to return from a subroutine previously called by LCALL or
ACALL. Program execution continues at the address that is calculated by popping the
topmost 2 bytes off the stack. The most-significant-byte is popped off the stack first,
followed by the least-significant-byte.

Operation: RETI

Function: Return From Interrupt

Syntax: RETI

Description: RETI is used to return from an interrupt service routine. RETI first
enables interrupts of equal and lower priorities to the interrupt that is terminating.
Program execution continues at the address that is calculated by popping the topmost
2 bytes off the stack. The most-significant-byte is popped off the stack first, followed
by the least-significant-byte.

M.L.N.Rao, Asst. Prof. in Electronics, St. Joseph’s Degree & PG College, Page 9
Autonomous, Affiliated Osmania University, Accredited by NAAC with Grade ‘A’ .

RETI functions identically to RET if it is executed outside of an interrupt service
routine.

Bit-Wise Instructions

Operation: JB

Function: Jump if Bit Set

Syntax: JB bit addr, reladdr

Description: JB branches to the address indicated by reladdr if the bit indicated by
bit addr is set. If the bit is not set program execution continues with the instruction
following the JB instruction.

Operation: JNB

Function: Jump if Bit Not Set

Syntax: JNB bit addr,reladdr

Description: JNB will branch to the address indicated by reladdress if the indicated
bit is not set. If the bit is set program execution continues with the instruction
following the JNB instruction.

Operation: JBC

Function: Jump if Bit Set and Clear Bit

Syntax: JB bit addr, reladdr

Description: JBC will branch to the address indicated by reladdr if the bit indicated
by bit addr is set. Before branching to reladdr the instruction will clear the indicated
bit. If the bit is not set program execution continues with the instruction following the
JBC instruction.

