
B.SC III Year
Programming in JAVA

UNIT I

Syllabus:

Unit – 1: Introduction to Java

Basic Concepts: Introduction, Java features, Java Virtual Machine, Java Program Structure,

Command Line Arguments, Type Casting.

Closer look at Methods and classes: Defining a Class, Creating Objects, Accessing class

members, Constructors, Garbage Collection, finalize () method, Static Members, Final Variables

and Methods, Final Classes, Abstract Methods and Classes, String Handling, Inheritance,

Exceptions Handling.

Unit – 2: Packages, Interfaces & Multi-threading

Packages: Built-in Packages (java.awt, java.io, java.lang, java.math, java.sql, java.util), Creating

User Defined Packages, Accessing a Package, Using a Package.

Interfaces: Defining Interfaces, Extending Interfaces, Implementing Interfaces, Accessing

Interface Variables.

Threading: Introduction, creating threads, extending the thread class, Life cycle of thread, thread

methods, threads priority, implementing thread using runnable interface.

Unit – 3: Java Server Pages:

JSP: Introduction, Architecture of JSP, Life Cycle of JSP, Scripting elements (Scriplets, JSP

Declarations, JSP Expression),Directive Elements (page, include, taglib),

JSP Actions (include, setproperty, getproperty, forward, text), Implicit objects (request, response,

out, page, Exception), including HTML in JSP

Unit -4: Interacting with Database:

Introduction to JDBC, Essential JDBC classes, Connecting to database, Inserting data in database,

Retrieving data from database, deleting data in database, updating data in database, store image

in the database, to retrieve image from database, to store file in database, retrieve file from

database.

References:

1. Herbert Schildt, The Complete Reference Java2.0, Fifth edition, TATA McGraw-Hill

Company.

2. Phil Hanna, JSP : Complete Reference, TATA McGraw-Hill Company

3. Debasish Jana, Java and Object-Oriented programming Paradigm, PHI.

4. Jana, Java and Object Oriented Programming Paradigm, PHI (2007).

B.SC III Year
Programming in JAVA

UNIT I

 B.Sc. (Computer Science)

III - Year / V - Semester

PRACTICAL PAPER – VII

Programming in Java Lab

Subject Code: BS. 07.201.23.P

1. Write a Java Program to demonstrate constructors.

2. Write a Java program to practice using String class and its methods.

3. Implementing an exception called ‘MarksOutOfBoundsException’ that is thrown if entered

marks greater than 100.

4. Write a java program to demonstrate Packages.

5. Write a program to demonstrate use of implementing interfaces.

6. Write a program to demonstrate use of extending interfaces.

7. Write a java program to demonstrate threads.

8. Write a java to implementing thread using runnable interface.

9. Installation of Tomcat Server.

10. Create a table which should contain at least the following fields: name, password, email-

id, phone number Write a JSP to connect to that database and extract data from the tables

and display them. Insert the details of the users who register with the web site, whenever a

new user clicks the submit button in the registration page.

11. Create a table which should contain the following fields: name, password, email-id, phone

number (these should hold the data from the registration form).Write JSP to connect to that

database and extract data from the tables and display them.

12. Write a JSP which does the following job: Insert the details of the 3 or 4 users who register

with the web site by using registration form. Authenticate the user when he submits the

login form using the user name and password from the database and display the message

“successfully logged in”.

13. Write a JSP Program to delete data in database.

14. Write a JSP Program store image and file in the database.

15. Write a JSP Program to retrieve image and file from database.

B.SC III Year
Programming in JAVA

UNIT I

Features of Java

A list of most important features of Java language is given below.

1. Simple

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Interpreted

9. High Performance

10. Multithreaded

11. Distributed

12. Dynamic

Simple

Java is very easy to learn, and its syntax is simple, clean and easy to understand. According to

Sun, Java language is a simple programming language because:

 Java has removed many complicated and rarely-used features, for example, explicit

pointers, operator overloading, etc.

 There is no need to remove unreferenced objects because there is an Automatic Garbage

Collection in Java.

B.SC III Year
Programming in JAVA

UNIT I

Object-oriented

Java is an object-oriented programming language. Everything in Java is an object. Object-

oriented means we organize our software as a combination of different types of objects that

incorporates both data and behavior.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

Platform Independent

Java is platform independent because it is different from other languages like C, C++, etc. which

are compiled into platform specific machines while Java is a write once, run anywhere language.

A platform is the hardware or software environment in which a program runs.

Java code can be run on multiple platforms, for example, Windows, Linux, Sun Solaris, Mac/OS,

etc. Java code is compiled by the compiler and converted into bytecode. This bytecode is a

platform-independent code because it can be run on multiple platforms, i.e., Write Once and Run

Anywhere(WORA).

Secured

Java is best known for its security. With Java, we can develop virus-free systems. Java is secured

because:

 No explicit pointer

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial

B.SC III Year
Programming in JAVA

UNIT I

 Java Programs run inside a virtual machine sandbox

Java language provides these securities by default. Some security can also be provided by an

application developer explicitly through SSL, JAAS, Cryptography, etc.

Robust:

Robust simply means strong. Java is robust because:

 It uses strong memory management.

 There is a lack of pointers that avoids security problems.

 There is automatic garbage collection in java which runs on the Java Virtual Machine to

get rid of objects which are not being used by a Java application anymore.

 There are exception handling and the type checking mechanism in Java. All these points

make Java robust.

Architecture-neutral:

Java is architecture neutral because there are no implementation dependent features, for

example, the size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4

bytes of memory for 64-bit architecture. However, it occupies 4 bytes of memory for both 32 and

64-bit architectures in Java.

Portable:Java is portable because it facilitates you to carry the Java bytecode to any platform. It

doesn't require any implementation.

High-performance:

Java is faster than other traditional interpreted programming languages because Java bytecode is

"close" to native code. It is still a little bit slower than a compiled language (e.g., C++). Java is

an interpreted language that is why it is slower than compiled languages, e.g., C, C++, etc.

Distributed:Java is distributed because it facilitates users to create distributed applications in

Java. RMI and EJB are used for creating distributed applications. This feature of Java makes us

able to access files by calling the methods from any machine on the internet.

Multi-threaded:A thread is like a separate program, executing concurrently. We can write Java

programs that deal with many tasks at once by defining multiple threads. The main advantage of

multi-threading is that it doesn't occupy memory for each thread. It shares a common memory

area. Threads are important for multi-media, Web applications, etc.

Dynamic:Java is a dynamic language. It supports dynamic loading of classes. It means classes

are loaded on demand. It also supports functions from its native languages, i.e., C and C++.

Java supports dynamic compilation and automatic memory management (garbage

collection).

B.SC III Year
Programming in JAVA

UNIT I

Classes and Objects:

Classes

 A Class is a collection of data members and member functions. Data members are used

to store information; member functions are used to perform operations on data.

 A class is a group of objects which have common properties.

 It is a template or blueprint from which objects are created.

A class in Java can contains:

Syntax to declare a class:

 class ClassName

 {

 Fileds or Data members;

 Methods or member functions;

 }

Field declarations Syntax:

 Class classname

 {

 Datatype variablename1;

 Datatype variablename2;

 .

 .

 .

 Datatype variablenamen;

 }

B.SC III Year
Programming in JAVA

UNIT I

Method declaration Syntax:

 Returntype methodname(ArgumentsList)

 {

 Method body;

 }

Object:

An entity that has state and behaviour is known as an object e.g. chair, bike, marker, pen,

table, car etc. It can be physical or logical.

An object has three characteristics:

 State : Represents the data (value) of an object.

 Behavior: represents the behavior (functionality) of an object such as deposit, withdraw,

etc.

 Identity: An object identity is typically implemented via a unique ID. The value of the

ID is not visible to the external user. However, it is used internally by the JVM to identify

each object uniquely.

Syntax to declare a object:

Classname objectname=new Classname();

Programs: Programs on Classes and objects refer the class notes.

B.SC III Year
Programming in JAVA

UNIT I

Write briefly about Type Casting:

 Converting one data type variable value into another data type variable is called type

casting.

(OR)

 Assigning a value of one type to a variable of another type is known as Type Casting.

Example:

 int x = 10;

 byte y = (byte)x;

In Java, type casting is classified into two types,

 Widening Casting(Implicit)

Here we are converting byte to short, short to int, int to long, long to float and float to double.

 Narrowing Casting (Explicitly done)

Here we are converting Here we are converting double to float, float to long, long to int, int to

short and short to byte.

Widening or Automatic type converion

Automatic Type casting take place when,

 The two types are compatible

B.SC III Year
Programming in JAVA

UNIT I

 The target type is larger than the source type

Example :

class Test

{

 public static void main(String[] args)

 {

 int i = 100;

 long l = i; //no explicit type casting required

 float f = l; //no explicit type casting required

 System.out.println("Int value "+i);

 System.out.println("Long value "+l);

 System.out.println("Float value "+f);

 }

}

OUTPUT:

Int value 100

 Long value 100

Float value 100.0

Narrowing or Explicit type conversion:

When you are assigning a larger type value to a variable of smaller type, then you need to

perform explicit type casting.

Example :

class Test

{

 public static void main(String[] args)

 {

 double d = 100.04;

 long l = (long)d; //explicit type casting required

 int i = (int)l; //explicit type casting required

 System.out.println("Double value "+d);

 System.out.println("Long value "+l);

 System.out.println("Int value "+i);

 }

B.SC III Year
Programming in JAVA

UNIT I

}

OUTPUT:

Double value 100.04

Long value 100

Int value 100

Write briefly about Garbage Collection

 In Java destruction of object from memory is done automatically by the JVM.

 This technique is called Garbage Collection. This is accomplished by the JVM. Unlike

C++ there is no explicit need to destroy object.

Advantages of Garbage Collection

1. Programmer doesn't need to worry about dereferencing an object.

2. It is done automatically by JVM.

3. Increases memory efficiency and decreases the chances for memory leak.

finalize() method

 Sometime an object will need to perform some specific task before it is destroyed such as

closing an open connection or releasing any resources held. To handle such situation

finalize() method is used.

 finalize() method is called by garbage collection before collecting object.

Syntax of finalize() method

 protected void finalize()

 {

 //finalize-code

 }

Note:

B.SC III Year
Programming in JAVA

UNIT I

1. finalize() method is defined in java.lang.Object class, therefore it is available to all the

classes.

2. finalize() method is declare as proctected/public inside Object class.

3. finalize() method gets called only once by a thread named GC (Garbage Collector)thread.

gc() Method

gc() method is used to call garbage collector explicitly. It only requests the JVM for garbage

collection. This method is present in System and Runtime class.

Example for gc() method.

public class Test

{

 public static void main(String[] args)

 {

 Test t = new Test();

 t=null;

 System.gc();

 }

 public void finalize()

 {

 System.out.println("Garbage Collected");

 }

}

OUTPUT: Garbage Collected

Can the Garbage Collection be forced explicitly ?

No, the Garbage Collection can not be forced explicitly. We may request JVM for garbage

collection by calling System.gc() method.

Abstract Methods and classes:

Abstraction is a process of hiding the implementation details and showing only

functionality to the user.

Ways to achieve Abstraction:

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

B.SC III Year
Programming in JAVA

UNIT I

Abstract class in Java

A class which is declared as abstract is known as an abstract class. It can have abstract and

non-abstract methods. It needs to be extended and its method implemented. It cannot be

instantiated.

 An abstract class must be declared with an abstract keyword.

 It can have abstract and non-abstract methods.

 It cannot be instantiated.

 It can have constructors and static methods also.

 It can have final methods.

Syntax:

abstract class classname

{

Body of the abstract class

}

Abstract Method in Java

B.SC III Year
Programming in JAVA

UNIT I

A method which is declared as abstract and does not have implementation is known as an

abstract method.

Syntax:

Abstract returntype methodname (ArgumentsList); //no method body

Program: Write a Java Program on abstract methods and abstract classes

In this example, Bank is an abstract class that contains only one abstract method

getRateOfInterset(). Its implementation is provided by the SBI,PNB classes.

abstract class Bank

{

abstract int getRateOfInterest();

}

class SBI extends Bank

{

int getRateOfInterest ()

{

return 7;

}

}

class PNB extends Bank

{

int getRateOfInterest()

{

return 8;

}

}

class TestBank

{

public static void main(String args[])

{

Bank b;

b=new SBI();

System.out.println("Rate of Interest is: "+b.getRateOfInterest());

b=new PNB();

B.SC III Year
Programming in JAVA

UNIT I

System.out.println("Rate of Interest is: "+b.getRateOfInterest());

}

}

Explain in detail about Final variables, Final Methods and Final Classes.

 The final keyword in java is used to restrict the user.

 The java final keyword can be used in many contexts.

Final can be:

1. variable

2. method

3. class

1) Java final variable

 If you make any variable as final, you cannot change the value of final variable

 The final variables will be constant.

Example of final variable: There is a final variable speedlimit, we are going to change the value

of this variable, but It can't be changed because final variable once assigned a value can never be

changed.

class Bike

{

final int speedlimit=90;//final variable

 void run()

{

speedlimit=400;

 }

public static void main(String args[])

{

Bike obj=new Bike();

B.SC III Year
Programming in JAVA

UNIT I

obj.run();

}

}

2) Java final method

 If you make any method as final, you cannot override it.

 Final Methods are not used in derived classes.

Example of final method

class Bike

{

 final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

 void run()

{

System.out.println("running safely with 100kmph");

}

 public static void main(String args[])

{

Honda h= new Honda();

h.run();

 }

}

Here in above example we are using final method run() in derived class. This is violating

the rule of final methods. That is we cannot use same function in derived class. That means, we

cannot override the methods.

3) Java final class

 If you make any class as final, you cannot extend it. That is, we cannot use final

class as base class for other classes.

 This means, we cannot inherit properties from final class

Example of final class

final class Bike

{

Void run()

{

System.out.println("running safely with 90kmph");

B.SC III Year
Programming in JAVA

UNIT I

}

}

class Honda1 extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

 public static void main(String args[])

 {

 Honda1 honda= new Honda1();

honda.run();

 }

}

JVM:

JVM is a engine that provides runtime environment to drive the Java Code or applications. It

converts Java bytecode into machines language. JVM is a part of JRE(Java Run Environment). It

stands for Java Virtual Machine

4. First, Java code is complied into bytecode. This bytecode gets interpreted on different

machines

5. Between host system and Java source, Bytecode is an intermediary language.

6. JVM is responsible for allocating memory space.

B.SC III Year
Programming in JAVA

UNIT I

Generating machine code is a two step process:

Step 1:The process of compiling a java program into bytecode which is also reffered to as virtual

machine code.

Step 2:The virtual machine code is not machine specific. The machine specific code is generated

by the java interpreter. The process of converting bytecode into machine code is performed by

java Interpreter

Java Program Structure:

B.SC III Year
Programming in JAVA

UNIT I

Section Description

Documentation

Section

You can write a comment in this section. Comments are beneficial for the

programmer because they help them understand the code. These are

optional.

Three types of comment line representation:

• Single line (//)

• Multi line (/* */)

• Documentation Comments (/** */)

Import

statements

This line indicates that if you want to use a class of another package, then

you can do this by importing it directly into your program.

Example:

import java.io.*;

Interface

statement

Interfaces are like a class that includes a group of method declarations. It's

an optional section and can be used when programmers want to

implement multiple inheritances within a program.

Class

Definition

A Java program may contain several class definitions. Classes are the

main and essential elements of any Java program.

Main Method

Class

Every Java stand-alone program requires the main method as the starting

point of the program. This is an essential part of a Java program. There

may be many classes in a Java program, and only one class defines the

main method. Methods contain data type declaration and executable

statements

History of Java: The history of Java is very interesting. Java was originally designed for

interactive television, but it was too advanced technology for the digital cable television industry

at the time. The history of java starts with Green Team. Java team members (also known as

Green Team), initiated this project to develop a language for digital devices such as set-top

boxes, televisions, etc. However, it was suited for internet programming. Later, Java technology

was incorporated by Netscape. The principles for creating Java programming were "Simple,

Robust, Portable, Platform-independent, Secured, High Performance, Multithreaded,

Architecture Neutral, Object-Oriented, Interpreted and Dynamic".

B.SC III Year
Programming in JAVA

UNIT I

Currently, Java is used in internet programming, mobile devices, games, e-business solutions,

etc. There are given the significant points that describe the history of Java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in

June 1991. The small team of sun engineers called Green Team.

2) Originally designed for small, embedded systems in electronic appliances like set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling, and file extension was .gt.

4) After that, it was called Oak and was developed as a part of the Green project.

Why Java named "Oak"?

5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like

U.S.A., France, Germany, Romania, etc.

6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak

Technologies.

Why Java Programming named "Java"?

7) Why had they chosen java name for java language? The team gathered to choose a new

name. The suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA", etc. They

wanted something that reflected the essence of the technology: revolutionary, dynamic, lively,

cool, unique, and easy to spell and fun to say.

According to James Gosling, "Java was one of the top choices along with Silk". Since Java was

so unique, most of the team members preferred Java than other names.

8) Java is an island of Indonesia where first coffee was produced (called java coffee).

9) Notice that Java is just a name, not an acronym.

10) Initially developed by James Gosling at Sun Microsystems (which is now a subsidiary of

Oracle Corporation) and released in 1995.

11) In 1995, Time magazine called Java one of the Ten Best Products of 1995.

12) JDK 1.0 released in(January 23, 1996).

https://www.javatpoint.com/james-gosling-father-of-java
https://www.javatpoint.com/sun-microsystems

B.SC III Year
Programming in JAVA

UNIT I

UNIT-II

In java, programmers can create several classes &Interface. After creating these classes and

interface, it is better if they are divided into some groups depending on their relationship. Thus,

the classes and interface which handle similar or same task are put into the same directory or folder,

which is also known as package.

Packages act as “containers” for classes. A package represents a directory that contain related

group of classes & interface.

TYPES OF PACKAGES

There are basically only 2 types of java packages. They are as follow :

 System Packages or Java API/ Built -in Packages

 User Defined Packages.

SYSTEM PACKAGES OR JAVA API

As there are built in methods , java also provides inbuilt packages which contain lots of classes

&interfaces. These classes inside the packages are already defined & we can use them by importing

relevant package in our program. Java has an extensive library of packages, a programmer need

not think about logic for doing any task.

JAVA SYSTEM PACKAGES & THEIR CLASSES

 java.lang

Language Support classes. These are classes that java compiler itself uses & therefore they are

automatically imported. They include classes for primitive types, strings, maths function, threads

&exception.

 java .util

Language Utility classes such as vector, hash tables ,random numbers, date etc.

 java.io

Input /Output support classes. They provide facilities for the input & output of data

 java.awt

B.SC III Year
Programming in JAVA

UNIT I

Set of classes for implementing graphical user interface. They include classes for windows,

buttons, list, menus & so on.

 java.net

Classes for networking. They include classes for communicating with local computers as well as

with internet servers.

 java.applet

Classes for creating & implementing applets.

USER DEFINED PACKAGES :

The users of the Java language can also create their own packages. They are called user-defined

packages. User defined packages can also be imported into other classes & used exactly in the

same way as the Built in packages.

Creating User Defined Packages

Syntax :

package packageName;

public class className

{

- - - - - - - - - - - - -

// Body of className

- - - - - - - - - - - -

}

We must first declare the name of the package using the package keyword followed by the package

name. This must be the first statement in a Java source file. Then define a classes as normally as

define a class.

B.SC III Year
Programming in JAVA

UNIT I

Example :

package myPackage;

public class class1

{

- - - - - - - - - - - - -

// Body of class1

}

In the above example, myPackage is the name of the package. The class class1 is now considered

as a part of this package. This listing would be saved as a file called class1.java & located in a

directory named mypackage.

STEPS FOR CREATING PACKAGE :To create a user defined package the following steps

should be involved :-

1: Declare the package at the beginning of a file using the syntax :

package packageName;

2: Define the class that is to be put in the package & declare it public.

Java also supports the concept of package hierarchy. This is done by specifying multiple names in

a package statement, seprated by dots (.).

Ex :- package firstPackage.secondPackage;

ACCESSING A PACKAGE

Java package can be accessed either using a fully qualifiedclass name or using a shortcut approach

through the import statement.

Syntax :

import package1[.package2][.package3].classname;

B.SC III Year
Programming in JAVA

UNIT I

Here, package1 is the name of the top level package, package2 is the name of the package that is

inside the package & so on. We can have any number of packages in a package hierarchy. Finally

the explicit classname is specified. The import statement must end with a semicolon (;). The

import statement should appear before any class definitions in a source file. Multiple import

statements are allowed.

Ex :

import firstpackage.secondPackage.Myclass;

or

import firstpackage.*;

Simple example of java package

The package keyword is used to create a package in java.

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

How to compile java packageIf you are not using any IDE, you need to follow the syntax given

below:

javac -d directory javafilename

For example

javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use any

directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to

keep the package within the same directory, you can use . (dot).

B.SC III Year
Programming in JAVA

UNIT I

How to run java package program

You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac –d . Simple.java

To Run: java mypack.Simple

Interfaces in Java

An interface in java is a blueprint of a class. It has static constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction. There can be only abstract methods

in the Java interface, not method body. It is used to achieve abstraction and multiple inheritance

in Java.

In other words, you can say that interfaces can have abstract methods and variables. It cannot

have a method body.

How to declare an interface?An interface is declared by using the interface keyword. It

provides total abstraction; means all the methods in an interface are declared with the empty

body, and all the fields are public, static and final by default. A class that implements an

interface must implement all the methods declared in the interface.

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another

interface, but a class implements an interface

B.SC III Year
Programming in JAVA

UNIT I

Extending Interfaces

When one interface inherits from another interface, that sub-interface inherits all the methods

and constants that its super interface declared. In addition, it can also declare new abstract

methods and constants. To extend an interface, you use the extends keyword just as you do in

the class definition, an interface can directly extend multiple interfaces.

This can be done using the following syntax: interface InterfaceName extends interfacel[,

interface2, , interfaceN]

Example Program on Extending Interface:

import java.io.*;

interface student

{

public void store(int a,String b);

public void display();

}

interface marks extends student

{

public void read(int a,int b,int c);

B.SC III Year
Programming in JAVA

UNIT I

public void compute();

}

class Demo5 implements marks

{

int rno;

String name;

int m1,m2,m3;

public void store(int a,String b)

{

rno=a;

name=b;

}

public void display()

{

System.out.println("The Student Roll Number is "+rno);

System.out.println("The Student Name is "+name);

}

public void read(int x, int y, int z)

{

m1=x;

m2=y;

m3=z;

}

B.SC III Year
Programming in JAVA

UNIT I

public void compute()

{

int tot=m1+m2+m3;

float avg=(tot)/3;

System.out.println("The total is "+tot);

System.out.println("The average is "+avg);

}

public static void main(String args[])

{

Demo5 d=new Demo5();

d.store(01,"Aman");

d.display();

d.read(40,50,65);

d.compute();

}

}

Implementing Interfaces

To declare a class that implements an interface, you include an implements clause in the class

declaration. Your class can implement more than one interface, so the implements keyword is

followed by a comma-separated list of the interfaces implemented by the class.

A class that implements an interface must implement all the methods declared in the interface. The

methods must have the exact same signature (name + parameters) as declared in the interface

All variables in an interface are public, even if you leave out the public keyword in the variable

declaration.

B.SC III Year
Programming in JAVA

UNIT I

Threads in Java

To achieve multiple tasks parallel, Programmer uses threads. Multithreading gives Java the ability

to achieve multiple tasks in parallel. One task does not wait for another to complete. That is,

without completing one task, another task can start and also can execute.

MULTITHREADING REALTIME EXAMPLES

 Background jobs like running application servers like Oracle application server, Web

servers like Tomcat etc which will come into action whenever a request comes.

 Typing MS Word document while listening to music.

 Railway ticket reservation system where multiple customers accessing the server.

Multithreading in Java

 Multithreading in java is a process of executing multiple threads simultaneously.

 A thread is a lightweight sub-process, the smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking.

 However, we use multithreading than multiprocessing because threads use a shared

memory area. They don't allocate separate memory area so saves memory, and context-

switching between the threads takes less time than process. Java Multithreading is mostly

used in games, animation, etc

Every thread in Java is created and controlled by the java.lang.Thread class.

A thread can be in one of the following states,

1. New born state(New)

2. Ready to run state (Runnable)

3. Running state(Running)

4. Blocked state

5. Dead state

B.SC III Year
Programming in JAVA

UNIT I

New Born State:--

 The thread enters the new born state as soon as it is created. The thread is created using

the new operator.

 From the new born state the thread can go to ready to runnable mode or dead state.

Ready to run mode (Runnable Mode):--

 If the thread is ready for execution but waiting for the CPU the thread is said to be in

ready to running mode.

 All the events that are waiting for the processor are queued up in the ready to run mode

and are served in FIFO manner or priority scheduling.

Running State:--

 If the thread is in execution then it is said to be in running state.

 The thread can finish its work and end normally.

 The thread can also be forced to give up the control when one of the following conditions

arise

 A thread can be suspended by suspend() method. A suspended thread can be revived by

using the resume() method.

 A thread can be made to sleep for a particular time by using the sleep(milliseconds)

method.

Blocked State:--

 A thread is said to be in blocked state if it prevented from entering into the runnable state

and so the running state.

 The thread enters the blocked state when it is suspended, made to sleep or wait.

Dead State:--

B.SC III Year
Programming in JAVA

UNIT I

 The running thread ends its life when it has completed executing the run() method which

is called natural dead.

 The thread can also be killed at any stage by using the stop() method.

Extending Thread Class

class Multi extends Thread { // Create a class by extending Thread class

public void run(){

System.out.println("thread is running..."); // Defining run() in above class

}

public static void main(String args[]){

Multi t1=new Multi(); // Creating an object for class

t1.start(); // Call the start() by using object

 }

}

Explain various Thread Methods:

 We have various methods which can be called on Thread class object.

 These methods are very useful when writing a multithreaded application.

 Thread class has following important methods.

Method Signature Description

String getName() Retrieves the name of running thread.

void setName(String name) It is used to set name for thread

void start() This method will start a new thread of execution by

calling run() method of Thread/runnable object.

B.SC III Year
Programming in JAVA

UNIT I

void run() This method is the entry point of the thread.

Execution of thread starts from this method.

void sleep

(intsleeptime)

This method stops the thread for mentioned time

duration in argument (sleeptime in ms)

void yield() By invoking this method the current thread pause its

execution temporarily and allow other threads to

execute.

void join() This method used to queue up a thread in execution.

Once called on thread, current thread will wait till

calling thread completes its execution

booleanisAlive() This method will check if thread is alive or dead

intgetPriority() To retrieve priority of Thread

void setPriority(priorityConstant) It is used to set the priority value. There are 3

priorities.

MIN_PRIORITY

MAX_PRIORITY

NORM_PRORITY

currentThread() It is used to know currently executed Thread status.

Explain about Priority of a Thread (Thread Priority):

 Each thread has a priority.

 Priorities are represented by a number between 1 and 10.

B.SC III Year
Programming in JAVA

UNIT I

 In most cases, thread scheduler schedules the threads according to their priority.

The Thread class defines 3priority constants.

 MIN_PRIORITY=1

 NORM_PRIORITY=5

 MAX_PRIORITY=10

 Default priority of a thread is 5 (NORM_PRIORITY).

 The value of MIN_PRIORITY is 1 and the value of MAX_PRIORITY is 10.

Program: Write a JAVA Program on Thread Priorities.

import java.io.*;

classTestPriority extends Thread

{

public void run()

{

System.out.println("running thread name is:"+Thread.currentThread().getName());

System.out.println("running thread priorityis:"+Thread.currentThread().getPriority());

}

}

class Demo2

{

public static void main(String args[])

{

TestPriority m1=new TestPriority();

B.SC III Year
Programming in JAVA

UNIT I

TestPriority m2=new TestPriority();

m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

m1.start();

m2.start();

}

}

Write a JAVA Program on Implementing Thread Using Runnable Interface:

Class Multi3 implements Runnable{

public void run(){

System.out.println("thread is running...");

}

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start();

 }

}

Important Note:

If you are not extending the Thread class, your class object would not be treated as a thread

object. So you need to explicitly create Thread class object. We are passing the object of your

class that implements Runnable so that your class run() method may execute.

B.SC III Year
Programming in JAVA

UNIT I

UNIT-III

What is a web application?

A web application is an application accessible from the web. A web application is composed of

web components like Servlet, JSP, Filter, etc. and other elements such as HTML, CSS, and

JavaScript.

JSP technology is used to create web application just like Servlet technology. It can be thought

of as an extension to Servlet because it provides more functionality than servlet such as

expression language, JSTL, etc.

A JSP page consists of HTML tags and JSP tags. The JSP pages are easier to maintain than

Servlet because we can separate designing and development. It provides some additional features

such as Expression Language, Custom Tags, etc.

A server(generally referred to as application or web server) supports the Java Server Pages. This

server will act as a mediator between the client browser and a database. The following diagram

shows the JSP architecture.

JSP Architecture Flow

1. The user goes to a JSP page and makes the request via internet in user’s web browser.

2. The JSP request is sent to the Web Server.

3. Web server accepts the requested .jsp file and passes the JSP file to the JSP Servlet

Engine.

4. If the JSP file has been called the first time then the JSP file is parsed otherwise servlet is

instantiated. The next step is to generate a servlet from the JSP file. The generated servlet

output is sent via the Internet form web server to users web browser.

5. Now in last step, HTML results are displayed on the users web browser.

B.SC III Year
Programming in JAVA

UNIT I

Explain in detail about Lifecycle of JSP

A JSP page is converted into Servlet in order to service requests. The translation of a JSP page to

a Servlet is called Lifecycle of JSP. JSP Lifecycle is exactly same as the Servlet Lifecycle, with

one additional first step, which is, translation of JSP code to Servlet code.

The Following are the JSP Lifecycle steps:

1. Converting JSP to Servlet code.

2. Compilation of Servlet to bytecode.

3. Loading Servlet class into memory.

4. Creating servlet instance.

5. Initialization by calling jspInit() method

6. Request Processing by calling _jspService() method

7. Destroying by calling jspDestroy() method

B.SC III Year
Programming in JAVA

UNIT I

Web Container translates JSP code into a servlet class source(.java) file in step 1,

then in step 2 , compiles that into a java servlet class.

In the step 3, the servlet class bytecode is loaded using classloader. The Container then creates

an instance of that servlet class.

The initialized servlet can now service request. For each request the Web Container call

the _jspService() method. When the Container removes the servlet instance from service, it calls

the jspDestroy() method to perform any required clean up.

 JSP Scripting Elements

In JSP there are three types of scripting elements:

 JSP Expressions: It is a small java code which you can include into a JSP page. The syntax is

“<%= some java code %>”

 JSP Scriptlet: The syntax for a scriptlet is “<% some java code %>”. You can add 1 to many

lines of Java code in here.

 JSP Declaration: The syntax for declaration is “<%! Variable or method declaration %>”, in

here you can declare a variable or a method for use later in the code.

JSP Expressions

Using the JSP Expression you can compute a small expression, always a single line, and get the

result included in the HTML which is returned to the browser. Using the code we have previously

written, let’s explore expressions.

Eg Code:

The time on the server is <%= new java.util.Date() %>

Output:

The time on the server is Thursday January 21 07:21:43 GMT 2016.

Explanation

Here the “new java.util.Date()” is processed into the actual date and time shown through HTML

on the browser. Let’s explore expressions through a couple of more examples.

Examples

 In the first example we are going to see an expression for converting a string from lower case to

upper case. Here is the code:

The Expression: Converting a string to uppercase <%= new String(“Hello

World”).toUpperCase() %>

Here we are creating a “String” object with “Hello World” set as the value for object. Following

that we are calling a Java function “.toUpperCase” to convert the string from lower case to upper

case.

The HTML: Converting a string to uppercase: HELLO WORLD

JSP Scriptlets

B.SC III Year
Programming in JAVA

UNIT I

This JSP Scripting Element allows you to put in a lot of Java code in your HTML code. This Java

code is processed top to bottom when the page is the processed by the web server. Here the result

of the code isn’t directly combined with the HTML rather you have to use “out.println()” to show

what you want to mix with HTML. The syntax is pretty much the same only you don’t have to put

in an equal sign after the opening % sign.

Let’s take a look at the code:

Code:

1. <h2> Hello World</h2>

2.

3. <%

4.

5. for(inti=0; i<= 5; i++)

6.

7. {

8.

9. out.println(“
 I really love counting: ” + i);

10.

11. }

12.

13. %>

Output:

I really love counting: 1

I really love counting: 2

I really love counting: 3

I really love counting: 4

Explanation:

In this example we have set up a basic h2 heading and following that we have a “for loop” in the

scriptlet. Just to remember println means print line. In every iteration of the loop we print the “I

really love counting” and appends it with the integer value of the “i” printed through the HTML.

Just try to make sure that you don’t put in a lot of code in a scriptlet in JSP. This will make it

readable and easy to manage.

JSP Declarations

A declaration declares one or more variables or methods that you can use in Java code later in the

JSP file. You must declare the variable or method before you use it in the JSP file.

Following is the syntax for JSP Declarations −

<%! declaration; [declaration;]+ ... %>

B.SC III Year
Programming in JAVA

UNIT I

You can write the XML equivalent of the above syntax as follows −

<jsp:declaration>

 code fragment

</jsp:declaration>

Following is an example for JSP Declarations −

<%! int i = 0; %>

<%! int a, b, c; %>

<%! Circle a = new Circle(2.0); %>

 JSP directives

The jsp directives are messages that tells the web container how to translate a JSP page into the

corresponding servlet.

The entire JSP page process is controlled by this directive tags.JSP

Directives has been categorized into three types as follows.

1) Page directive

2) include directive

3) taglib directive

Syntax of JSP Directive

1. <%@ directive attribute="value" %>

JSP page directive

The page directive defines attributes that apply to an entire JSP page.

import

The import attribute is used to import class,interface or all the members of a package.

It is similar to import keyword in java class or interface.

Example of import attribute

1. <html>

2. <body>

3.

4. <%@ page import="java.util.Date" %>

5. Today is: <%= new Date() %>

6.

7. </body>

8. </html>

B.SC III Year
Programming in JAVA

UNIT I

The include directive is used to include the contents of any resource it may be jsp file, html file

or text file.

o import

o contentType

o extends

o info

o buffer

o language

o isELIgnored

o isThreadSafe

o autoFlush

o session

o pageEncoding

o errorPage

Advantage of Include directive

Code Reusability

Syntax of include directive

1. <%@ include file="resourceName" %>

Example of include directive

In this example, we are including the content of the header.html file. To run this example you

must create an header.html file.

1. <html>

2. <body>

3.

4. <%@ include file="header.html" %>

5.

6. Today is: <%= java.util.Calendar.getInstance().getTime() %>

7.

8. </body>

B.SC III Year
Programming in JAVA

UNIT I

9. </html>

JSP Taglib directive

The JSP taglib directive is used to define a tag library that defines many tags. We use the TLD

(Tag Library Descriptor) file to define the tags. In the custom tag section we will use this tag so

it will be better to learn it in custom tag.

Syntax JSP Taglib directive

1. <%@ taglib uri="uriofthetaglibrary" prefix="prefixoftaglibrary" %>

Example of JSP Taglib directive

In this example, we are using our tag named currentDate. To use this tag we must specify the

taglib directive so the container may get information about the tag.

1. <html>

2. <body>

3.

4. <%@ taglib uri="http://www.javatpoint.com/tags" prefix="mytag" %>

5.

6. <mytag:currentDate/>

7.

8. </body>

9. </html>

 JSP Actions

There are many JSP action tags or elements. Each JSP action tag is used to perform some

specific tasks.

The action tags are used to control the flow between pages and to use Java Bean.

B.SC III Year
Programming in JAVA

UNIT I

jsp:forward action tag

The jsp:forward action tag is used to forward the request to another resource it may be jsp, html

or another resource.

Syntax of jsp:forward action tag without parameter

1. <jsp:forward page="relativeURL | <%= expression %>" />

Example of jsp:forward action tag

In this example, we are simply forwarding the request to the printdate.jsp file.

index.jsp

1. <html>

2. <body>

3. <h2>this is index page</h2>

4.

5. <jsp:forward page="printdate.jsp" />

6. </body>

7. </html>

printdate.jsp

1. <html>

2. <body>

3. <% out.print("Today is:"+java.util.Calendar.getInstance().getTime()); %>

4. </body>

5. </html>

<jsp:include> Action:

 The include action is used to insert the files into the current page.

 The syntax of the include action:

<jsp: include page = " URL" />

Here page is an attribute is used to specify the address of the included page in the current page.

Example:

<jsp: include page="header.jsp" />

The <jsp:text> Action:

The text action can be used to write the template text in JSP pages and documents.

The syntax of the include action:

<jsp:text>Template data</jsp:text>

 Example:

B.SC III Year
Programming in JAVA

UNIT I

<jsp:text>Wecome to JSP Applications</jsp:text>

<jsp:setProperty> Action

 This setProperty action tag is used to set the property of a Bean(class). While using this

action tag, you may need to specify the Bean’s(class) unique name.

 The syntax of the setProperty action:

 <jsp: useBean name=”bean name” class=”classname”>

<jsp:setPropertyname="bean name"property="propertyname"value=”valueofproperty”/>

 Example:

<jsp:useBean name=”test” class=”Geometry”>

<jsp:setProperty name = "test" property = "message" value = "Hello JSP..." />

<jsp:getProperty> Action

 It is used to retrieve or fetch the value of Bean’s (class) property.

 The syntax of the getProperty action:

<jsp: useBean name=”bean name” class=”classname”>

<jsp:getPropertyname="bean name"property="property_name"/>

The setProperty and getProperty action tags are used for developing web application with Java

Bean. In web devlopment, bean class is mostly used because it is a reusable software component

that represents data.

 Jsp Implicit Objects

These objects are created by JSP Engine during translation phase (while translating JSP to

Servlet). They are being created inside service method so we can directly use them

within Scriptlet without initializing and declaring them. There are total 9 implicit objects

available in JSP.

Implicit Objects and their corresponding classes:

out javax.servlet.jsp.JspWriter

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

B.SC III Year
Programming in JAVA

UNIT I

session javax.servlet.http.HttpSession

application javax.servlet.ServletContext

exception javax.servlet.jsp.JspException

page java.lang.Object

pageContext javax.servlet.jsp.PageContext

config javax.servlet.ServletConfig

The output which needs to be sent to the client (browser) is passed through this object. In simple

words out implicit object is used to write content to the client.

Methods of OUT Implicit Object

void print()

void println()

void newLine()

void clear()

void clearBuffer()

void flush()

boolean isAutoFlush()

int getBufferSize()

int getRemaining()

1)void print(): This method writes the value which has been passed to it. below

Example:

out.print(“WELCOME”);

void println(): This method is similar to the print() method, the only difference between print

and println is that the println() method adds a new line character at the end.

 Example:

out.print(“hi”);

 out.print(“hello”);

output :

B.SC III Year
Programming in JAVA

UNIT I

hi hello

println()

 Example:

 out.println(“hi”);

 out.println(“hello”);

output:

hi

hello

3) void newLine(): This method adds a new line to the output. Example –

 Example:

out.print(“This will write content without a new line”);

 out.newLine();

 out.print(“I’m just an another print statement”);

Output:

This will write content without a new line

I’m just an another print statement

4)void clear(): It clears the output buffer without even letting it write the buffer content to the

client.

Example:

 out.clear();

5)void clearBuffer(): This method is similar to the clear() method. The only difference between

them is that when we invoke out.clear() on an already flushed buffer it throws an exception,

however out.clearBuffer() doesn’t.

6)boolean isAutoFlush() : It returns a Boolean value true/false. It is used to check whether the

buffer is automatically flushed or not.

7)int getBufferSize(): This method returns the size of output buffer in bytes.

B.SC III Year
Programming in JAVA

UNIT I

Example:

index.jsp

<body>

<%

out.print("print statement ");

out.println("println");

out.print("Another print statement");

%>

</body>

Request: The main purpose of request implicit object is to get the data on a JSP page which has

been entered by user on the previous JSP page. While dealing with login and signup forms in JSP

we often prompts user to fill in those details, this object is then used to get those entered details on

an another JSP page (action page) for validation and other purposes.

1) getParameter (String name) :

 This method is used to get the value of a request’s parameter.

 Example at login page user enters user-id and password and once the credentials

are verified the login page gets redirected to user information page, then using

request.getParameter we can get the value of user-id and password which user has

input at the login page.

 String Uid= request.getParameter("user-id");

 String Pass= request.getParameter("password");

2) getCookies() :

 It returns an array of cookie objects received from the client. This method is mainly used

when dealing with cookies in JSP.

 request.getCookies();

3) getRequestURI() :

This method (request.getRequestURI()) returns the URL of current JSP page.

request.getRequestURI();

4) getMethod() :

It returns HTTP request method. request.getMethod(). For example it will return GET for

a Get request and POST for a Post Request.

request.getMethod();

B.SC III Year
Programming in JAVA

UNIT I

Example of JSP request implicit object

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%

String name=request.getParameter("uname");

out.print("welcome "+name);

%>

 Response Object:

It is basically used for modifying or delaying with the response which is being sent to the client

(browser) after processing the request.

Methods of request Implicit Object

1)void setContentType(String type) – This method tells browser, the type of response data

by setting up the MIME type

 Example –

 response.setContentType("text/html");

 response.setContentType("image/gif");

 response.setContentType("image/png");

 response.setContentType("application/pdf");

2) void sendRedirect(String address) – It redirects the control to a new JSP page. For e.g.

When the browser would detect the below statement, it would be redirected to the

josephscollege.ac.in from the current JSP page.

 response.sendRedirect("http://josephscollege.ac.in");

3) void addCookie(Cookie cookie) –

This method adds a cookie to the response. The below statements would add 2

Cookies Author and Siteinfo to the response.

 response.addCookie(Cookie Author);

 response.addCookie(Cookie Siteinfo);

4) void sendError(int status_code, String message) –

It is used to send error response with a code and an error message. For example –

B.SC III Year
Programming in JAVA

UNIT I

 response.sendError(404, "Page not found error");

5)void setStatus(int statuscode) – This method is used to set the HTTP status to a given value.

For e.g. the below statement would set HTTP response code to 404 (Page not found).

 response.setStatus(404);

Example of response implicit object

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%

response.sendRedirect("http://www.google.com");

%>

4)Exception Object:

 Exception implicit object is used in exception handling for displaying the error messages.

 This object is only available to the JSP pages, which has isErrorPage set to true.

Example:

<%@ page isErrorPage="true" %>

<html>

<body>

Sorry following exception occured:<%= exception %>

</body>

</html>

5) page implicit object:

 In JSP, page is an implicit object of type Object class.

 This object is assigned to the reference of auto generated servlet class. It is written as:

 Object page=this;

For example:

B.SC III Year
Programming in JAVA

UNIT I

 <% this.log("message"); %>

UNIT IV

JAVA Database Connectivity

1) Introduction to JDBC

Java Database Connectivity(JDBC) is an Application Programming Interface(API)
used to connect Java application with Database. JDBC is used to interact with various
type of Database such as Oracle, MS Access, My SQL and SQL Server. JDBC can also
be defined as the platform-independent interface between a relational database and Java

programming. It allows java program to execute SQL statement and retrieve result from

database.

JDBC Driver

JDBC Driver is required to process SQL requests and generate result. The following are the

different types of driver available in JDBC.

 Type-1 Driver or JDBC-ODBC bridge

 Type-2 Driver or Native API Partly Java Driver

 Type-3 Driver or Network Protocol Driver

 Type-4 Driver or Thin Driver

1) Essential JDBC Classes

JDBC API is available in two packages java.sql, core API and javax.sql JDBC optional packages.

Following are the important classes and interfaces of JDBC.

Class/interface Description

DriverManager This class manages the JDBC drivers. You need to register your

drivers to this.

B.SC III Year
Programming in JAVA

UNIT I

Class/interface Description

It provides methods such as registerDriver() and

getConnection().

Driver This interface is the Base interface for every driver class i.e. If

you want to create a JDBC Driver of your own you need to

implement this interface. If you load a Driver class

(implementation of this interface), it will create an instance of

itself and register with the driver manager.

Statement This interface represents a static SQL statement. Using the

Statement object and its methods, you can execute an SQL

statement and get the results of it.

It provides methods such as execute(), executeBatch(),

executeUpdate() etc. To execute the statements.

PreparedStatement This represents a precompiled SQL statement. An SQL statement

is compiled and stored in a prepared statement and you can later

execute this multiple times. You can get an object of this

interface using the method of the Connection interface named

prepareStatement(). This provides methods such as

executeQuery(), executeUpdate(), and execute() to execute the

prepared statements and getXXX(), setXXX() (where XXX is

the datatypes such as long int float etc..) methods to set and get

the values of the bind variables of the prepared statement.

CallableStatement Using an object of this interface you can execute the stored

procedures. This returns single or multiple results. It will accept

input parameters too. You can create a CallableStatement using

the prepareCall() method of the Connection interface.

Just like Prepared statement, this will also provide setXXX() and

getXXX() methods to pass the input parameters and to get the

output parameters of the procedures.

B.SC III Year
Programming in JAVA

UNIT I

Class/interface Description

Connection This interface represents the connection with a specific database.

SQL statements are executed in the context of a connection.

This interface provides methods such as close(), commit(),

rollback(), createStatement(), prepareCall(), prepareStatement(),

setAutoCommit() setSavepoint() etc.

ResultSet This interface represents the database result set, a table which is

generated by executing statements. This interface provides getter

and update methods to retrieve and update its contents

respectively.

ResultSetMetaData This interface is used to get the information about the result set

such as, number of columns, name of the column, data type of

the column, schema of the result set, table name, etc

It provides methods such as getColumnCount(),

getColumnName(), getColumnType(), getTableName(),

getSchemaName() etc.

3) Example to Connect Java Application with Oracle database

In this example, we are connecting to an Oracle database and getting data from emp table.

Here, system and oracle are the username and password of the Oracle database.

1. import java.sql.*;

2. class ConnectProg{

3. public static void main(String args[]){

4. try{

5. //step1 load the driver class

6. Class.forName("oracle.jdbc.driver.OracleDriver");

7.

8. //step2 create the connection object

9. Connection con=DriverManager.getConnection(

10. "jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

11.

B.SC III Year
Programming in JAVA

UNIT I

12. //step3 create the statement object

13. Statement stmt=con.createStatement();

14.

15. //step4 execute query

16. ResultSet rs=stmt.executeQuery("select * from emp");

17. while(rs.next())

18. System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

19.

20. //step5 close the connection object

21. con.close();

22.

23. }catch(Exception e)

24. {

25. System.out.println(e);}

26.

27. }

28. }

The next() method of the ResultSet interface moves the pointer of the current (ResultSet) object

to the next row, from the current position.

i.e., on calling the next() method for the first time the result set pointer/cursor will be moved to the

1st row (from default position).

And on calling the next() method for the second time the result set cursor will be moved to the 2nd

row.

4)Inserting into database

import java.sql.*;

class JdbcInsert1 {

 public static void main (String[] args)

 {

 try {

 String url = "jdbc:msql://200.210.220.1:1114/Demo";

 Connection conn = DriverManager.getConnection(url,"","");

 Statement st = conn.createStatement();

 st.executeUpdate("INSERT INTO Customers " +

 "VALUES (1001, 'Simpson', 'Mr.', 'Springfield', 2001)");

B.SC III Year
Programming in JAVA

UNIT I

 st.executeUpdate ("INSERT INTO Customers " +

 "VALUES (1002, 'McBeal', 'Ms.', 'Boston', 2004)");

 st.executeUpdate("INSERT INTO Customers " +

 "VALUES (1003, 'Flinstone', 'Mr.', 'Bedrock', 2003)");

 st.executeUpdate("INSERT INTO Customers " +

 "VALUES (1004, 'Cramden', 'Mr.', 'New York', 2001)");

 conn.close();

 }

 catch (Exception e) {

 System.err.println("Got an exception! ");

 System.err.println(e.getMessage());

 }

 }

}

5) Explain the procedure to retrieve data from database.

Step 1: Register with JDBC Driver

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Step 2: Get the connection from database

Connection conn=DriverManager.getConnection (url, username, password);

Here, username=”system”; password=”admin”;

url=”jdbc:oracle:thin:@localhost:1521:XE”;

Step 3: Create Statement object

Statement stmt=conn.createStatement ();

Step 4:

Execute the Query by using executeQuery() and store the result in ResultSet object.

String sql=”select * from employee”;

ResultSet rs=Stmt.executeQuery (sql);

Use the next() to retrieve data from table.

while(rs.next())

{

int eid=rs.getInt(eid);

System.out.println(eid);

String name=rs.getString(name);

System.out.println(name);

}

B.SC III Year
Programming in JAVA

UNIT I

Step 5: Close the Connection

conn.close ();

Program:

import java.sql.*;

class RetrievingData

{

public static void main(String args[])

{

try

{

String username=”system”;

String password=”admin”;

String url=”jdbc:oracle:thin:@localhost:1521:XE”;

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Connection conn=DriverManager.getConnection (url, username, password);

Statement stmt=conn.createStatement ();

String sql=”select * from employee”;

ResultSet rs=Stmt.executeQuery (sql);

while(rs.next())

{

int eid=rs.getInt(eid);

System.out.println(eid);

String name=rs.getString(name);

System.out.println(name);

}

conn.close ();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

Note:

Here,

next() is used to move cursor or resultset object (rs) to next row in a table.

getInt() is used to retrieve integer data from database table.

getString() is used to retrieve String data from database table.

B.SC III Year
Programming in JAVA

UNIT I

6) Explain the procedure to Store an image in database

To store image into the database first we have to create table with two columns that is name and

photo in database as follows:

Create table student (Name varchar (20), Photo BLOB);

BLOB=A BLOB is binary large object that can hold a variable amount of data with a maximum

length of 65535 characters.

These are used to store large amounts of binary data, such as images or other types of files.

The various steps involved in JDBC to store image in database

Step 1: Register with JDBC Driver

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Step 2: Get the connection from database

Connection conn=DriverManager.getConnection (url, username, password);

Here, username=”system”; password=”admin”;

url=”jdbc:oracle:thin:@localhost:1521:XE”;

Step 3: Create PreparedStatement object by passing sql query

String sql=”insert into student values(?,?)”;

PreparedStatement ps=conn.prepareStatement (sql);

Why use PreparedStatement?

PreparedStatement interface

The PreparedStatement interface is a subinterface of Statement. It is used to execute

parameterized query.

Improves performance: The performance of the application will be faster if you use

PreparedStatement interface because query is compiled only once.

Step 4: Now we have to store data of two columnsas follows:

a) Storing first column value using setString()

ps.setString(1,”Sailaja”);

b) Storing second column value as follows:

FileInputStream fin=new FileInputStream("d:\\Sailaja.jpg");

ps.setBinaryStream(2,fin,fin.available());

ps.executeUpdate();

B.SC III Year
Programming in JAVA

UNIT I

Step 5: Close the Connection

conn.close ();

Program:

import java.sql.*;

class StoringImage

{

public static void main(String args[])

{

try

{

String username=”system”;

String password=”admin”;

String url=”jdbc:oracle:thin:@localhost:1521:XE”;

DriverManager.registerDriver(new oracle.jdbc.driver.oracleDriver ());

Connection conn=DriverManager.getConnection (url, username, password);

String sql=”insert into student values(?,?)”;

PreparedStatement ps=conn.prepareStatement (sql);

ps.setString(1,”Sailaja”);

FileInputStream fin=new FileInputStream("d:\\Sailaja.jpg");

ps.setBinaryStream(2,fin,fin.available());

ps.executeUpdate();

conn.close ();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

7) Explain the procedure to store a file in database

To store file into the database first we have to create table with two columns that is name and

profile in database as follows:

Create table student (Name varchar (20), Profile CLOB);

The various steps involved in JDBC to store file in database

Step 1: Register with JDBC Driver

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Step 2: Get the connection from database

Connection conn=DriverManager.getConnection (url, username, password);

B.SC III Year
Programming in JAVA

UNIT I

Here, username=”system”; password=”admin”;

url=”jdbc:oracle:thin:@localhost:1521:XE”;

Step 3: Create PreparedStatement object by passing sql query

String sql=”insert into student values(?,?)”;

PreparedStatement ps=conn.prepareStatement (sql);

Step 4: Now we have to store data of two columns as follows:

a) Storing first column value using setString()

ps.setString(1,”Sailaja”);

b) Storing second column value as follows:

File f=new File("d:\\myfile.txt");

FileReader fr=new FileReader(f);

 ps.setCharacterStream(2,fr);

ps.executeUpdate();

Step 5: Close the Connection

conn.close ();

Program:

import java.sql.*;

class StoringFile

{

public static void main(String args[])

{

try

{

String username=”system”;

String password=”admin”;

String url=”jdbc:oracle:thin:@localhost:1521:XE”;

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Connection conn=DriverManager.getConnection (url, username, password);

String sql=”insert into student values(?,?)”;

PreparedStatement ps=conn.prepareStatement (sql);

ps.setString(1,”Sailaja”);

File f=new File("d:\\myfile.txt");

FileReader fr=new FileReader(f);

ps.setCharacterStream(2,fr);

ps.executeUpdate();

conn.close ();

}

catch(Exception e)

{

B.SC III Year
Programming in JAVA

UNIT I

System.out.println(e);

}

}

}

8) Explain the procedure to retrieve an image from database

The various steps involved in JDBC to retrieve image from database

Step 1: Register with JDBC Driver

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Step 2: Get the connection from database

Connection conn=DriverManager.getConnection (url, username, password);

Here, username=”system”; password=”admin”;

url=”jdbc:oracle:thin:@localhost:1521:XE”;

Step 3: Create PreparedStatement object by passing sql query

String sql=”select * from student”;

PreparedStatement ps=conn.prepareStatement (sql);

Step 4: create ResultSet Object using executeQuery() and use next() to retrieve data from

database table.

ResultSet rs=ps.executeQuery();

if(rs.next()) //now on 1st row

{

Blob b=rs.getBlob(2); //2 means 2nd column data

byte i=b.getBytes();

FileOutputStream fout=new FileOutputStream();

fout.write(i);

}

Step 5: Close the Connection

conn.close ();

Program:

import java.sql.*;

class StoringImage

{

public static void main(String args[])

{

try

B.SC III Year
Programming in JAVA

UNIT I

{

String username=”system”;

String password=”admin”;

String url=”jdbc:oracle:thin:@localhost:1521:XE”;

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Connection conn=DriverManager.getConnection (url, username, password);

String sql=”insert into student values(?,?)”;

PreparedStatement ps=conn.prepareStatement (sql);

ResultSet rs=ps.executeQuery();

if(rs.next()) //now on 1st row

{

Blob b=rs.getBlob(2); //2 means 2nd column data

byte i=b.getBytes();

FileOutputStream fout=new FileOutputStream();

fout.write(i);

}

conn.close ();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

9) Explain the procedure to retrieve a file from database

The various steps involved in JDBC to retrieve a file from database

Step 1: Register with JDBC Driver

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Step 2: Get the connection from database

Connection conn=DriverManager.getConnection (url, username, password);

Here, username=”system”; password=”admin”;

url=”jdbc:oracle:thin:@localhost:1521:XE”;

Step 3: Create PreparedStatement object by passing sql query

String sql=”select * from student”;

PreparedStatement ps=conn.prepareStatement (sql);

B.SC III Year
Programming in JAVA

UNIT I

Step 4: create ResultSet Object using executeQuery() and use next() to retrieve data from

database table.

ResultSet rs=ps.executeQuery();

if(rs.next()) //now on 1st row

{

Clob b=rs.getClob(2); //2 means 2nd column data

Reader i=b.getCharacterStream();

FileWriter f=new FileWriter();

f..write(i);

}

Step 5: Close the Connection

conn.close ();

Program:

import java.sql.*;

class StoringImage

{

public static void main(String args[])

{

try

{

String username=”system”;

String password=”admin”;

String url=”jdbc:oracle:thin:@localhost:1521:XE”;

DriverManager.registerDriver (new oracle.jdbc.driver.oracleDriver ());

Connection conn=DriverManager.getConnection (url, username, password);

String sql=”insert into student values(?,?)”;

PreparedStatement ps=conn.prepareStatement (sql);

ResultSet rs=ps.executeQuery();

if(rs.next()) //now on 1st row

{

Clob b=rs.getClob(2); //2 means 2nd column data

Reader i=b.getCharacterStream();

FileWriter f=new FileWriter();

f..write(i);

}

conn.close ();

B.SC III Year
Programming in JAVA

UNIT I

}

catch(Exception e)

{

System.out.println(e);

}

}

}

 -----END----

	Syllabus:
	Unit – 1: Introduction to Java
	JSP: Introduction, Architecture of JSP, Life Cycle of JSP, Scripting elements (Scriplets, JSP Declarations, JSP Expression),Directive Elements (page, include, taglib),
	JSP Actions (include, setproperty, getproperty, forward, text), Implicit objects (request, response, out, page, Exception), including HTML in JSP
	Introduction to JDBC, Essential JDBC classes, Connecting to database, Inserting data in database, Retrieving data from database, deleting data in database, updating data in database, store image in the database, to retrieve image from database, to sto...
	Programming in Java Lab
	Features of Java
	Simple
	Object-oriented
	Java is an object-oriented programming language. Everything in Java is an object. Object-oriented means we organize our software as a combination of different types of objects that incorporates both data and behavior.
	Basic concepts of OOPs are:
	Platform Independent
	Robust:
	Robust simply means strong. Java is robust because:
	Architecture-neutral:
	Dynamic:Java is a dynamic language. It supports dynamic loading of classes. It means classes are loaded on demand. It also supports functions from its native languages, i.e., C and C++.
	Java supports dynamic compilation and automatic memory management (garbage collection).
	Classes and Objects:
	Classes
	 A Class is a collection of data members and member functions. Data members are used to store information; member functions are used to perform operations on data.
	 A class is a group of objects which have common properties.
	 It is a template or blueprint from which objects are created.
	Object:
	An entity that has state and behaviour is known as an object e.g. chair, bike, marker, pen, table, car etc. It can be physical or logical.
	Programs: Programs on Classes and objects refer the class notes.
	Write briefly about Type Casting:
	Here we are converting Here we are converting double to float, float to long, long to int, int to short and short to byte.
	Widening or Automatic type converion
	Narrowing or Explicit type conversion:
	When you are assigning a larger type value to a variable of smaller type, then you need to perform explicit type casting.

	Write briefly about Garbage Collection
	Advantages of Garbage Collection
	finalize() method
	Note:
	gc() Method
	Example for gc() method.
	Can the Garbage Collection be forced explicitly ?

	Abstract Methods and classes:
	Ways to achieve Abstraction:
	Abstract class in Java
	Abstract Method in Java

	Explain in detail about Final variables, Final Methods and Final Classes.
	1) Java final variable
	Example of final variable: There is a final variable speedlimit, we are going to change the value of this variable, but It can't be changed because final variable once assigned a value can never be changed.

	2) Java final method
	Example of final method

	3) Java final class
	Example of final class

	JVM:
	JVM is a engine that provides runtime environment to drive the Java Code or applications. It converts Java bytecode into machines language. JVM is a part of JRE(Java Run Environment). It stands for Java Virtual Machine
	Generating machine code is a two step process:
	Step 1:The process of compiling a java program into bytecode which is also reffered to as virtual machine code.
	Step 2:The virtual machine code is not machine specific. The machine specific code is generated by the java interpreter. The process of converting bytecode into machine code is performed by java Interpreter
	Java Program Structure:
	History of Java: The history of Java is very interesting. Java was originally designed for interactive television, but it was too advanced technology for the digital cable television industry at the time. The history of java starts with Green Team. Ja...
	Why Java named "Oak"?
	Why Java Programming named "Java"?
	Simple example of java package
	How to compile java packageIf you are not using any IDE, you need to follow the syntax given below:
	How to declare an interface?An interface is declared by using the interface keyword. It provides total abstraction; means all the methods in an interface are declared with the empty body, and all the fields are public, static and final by default. A c...
	The relationship between classes and interfaces
	MULTITHREADING REALTIME EXAMPLES

	Multithreading in Java
	 A thread is said to be in blocked state if it prevented from entering into the runnable state and so the running state.
	 The thread enters the blocked state when it is suspended, made to sleep or wait.
	 The running thread ends its life when it has completed executing the run() method which is called natural dead.
	 The thread can also be killed at any stage by using the stop() method.
	 We have various methods which can be called on Thread class object.
	 These methods are very useful when writing a multithreaded application.
	 Thread class has following important methods.
	Explain about Priority of a Thread (Thread Priority):
	The Thread class defines 3priority constants.
	import java.io.*;
	classTestPriority extends Thread
	{
	public void run()
	{ (1)
	System.out.println("running thread name is:"+Thread.currentThread().getName()); System.out.println("running thread priorityis:"+Thread.currentThread().getPriority());
	}
	} (1)
	class Demo2
	{ (2)
	public static void main(String args[])
	{ (3)
	TestPriority m1=new TestPriority();
	TestPriority m2=new TestPriority();
	m1.setPriority(Thread.MIN_PRIORITY);
	m2.setPriority(Thread.MAX_PRIORITY);
	m1.start();
	m2.start();
	} (2)
	JSP Architecture Flow
	Explain in detail about Lifecycle of JSP

	JSP Expressions
	Output:
	Explanation
	Examples

	JSP Scriptlets
	Code:
	Explanation:
	JSP Declarations

	JSP directives
	Syntax of JSP Directive
	JSP page directive
	Example of import attribute
	Advantage of Include directive
	Syntax of include directive
	Example of include directive

	JSP Taglib directive
	Syntax JSP Taglib directive
	Example of JSP Taglib directive
	jsp:forward action tag
	Syntax of jsp:forward action tag without parameter
	Example of jsp:forward action tag
	index.jsp
	printdate.jsp
	<jsp:include> Action:
	 The include action is used to insert the files into the current page.
	 The syntax of the include action:
	The <jsp:text> Action:
	<jsp:setProperty> Action
	 Example:
	<jsp:getProperty> Action

	Jsp Implicit Objects
	Methods of OUT Implicit Object
	Example of JSP request implicit object
	index.html
	welcome.jsp
	Example of response implicit object

	5) page implicit object:
	3) Example to Connect Java Application with Oracle database

	PreparedStatement interface

