
Software Engineering Unit - I

1

INTRODUCTION TO SOFTWARE ENGINEERING

WHAT IS SOFTWARE?

Computer programs and associated documentation

Software products may be developed for a particular customer or may be developed for a

general market

Software products may be

➢ Generic - developed to be sold to a range of different customers

➢ Bespoke (custom) - developed for a single customer according to their specification

➢What is software engineering?

The term software engineering is composed of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves

some computational purpose. Software is considered to be a collection of executable

programming code, associated libraries and documentations. Software, when made for a

specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific

principles and methods.

So, we can define software engineering as a detailed study of engineering to the design,

development and maintenance of software. Software engineering was introduced to address

the issues of low-quality software projects. Problems arise when a software generally exceeds

timelines, budgets, and reduced levels of quality. It ensures that the application is built

consistently, correctly, on time and on budget and within requirements.

IEEE defines software engineering as: The application of a systematic, disciplined,

quantifiable approach to the development, operation and maintenance of software.

Software Engineering Unit - I

2

Software engineers should

➢ Adopt a systematic and organised approach to their work

➢ Use appropriate tools and techniques depending on

➢ The problem to be solved,

➢ The development constraints and

➢ The resources available

Software Characteristics: - To gain an understanding of SW, it is important to examine

the characteristics of software that make it different from other things that human being

built. When hardware is built, the human creative Process (analysis, design, construction,

testing) is ultimately translated into a physical form. Software is a logical rather than a

physical system element. Therefore, software has characteristics that differ considerably

from those of hardware:

➢ Operational: -This tells how good a software works on operations like budget, usability,

efficiency, correctness, functionality, dependability, security and safety.

➢ Transitional: - Transitional is important when an application is shifted from one platform

to another. So, portability, reusability and adaptability come in this area.

➢ Maintenance: - This specifies how good a software works in the changing environment.

Modularity, maintainability, flexibility and scalability come in maintenance part.

➢ Software is developed or engineered; Software is developed or engineered; it is not

manufactured in the classical sense. Although some similarities exist between software

development and hardware manufacture, the two activities are fundamentally different.

➢ Software doesn't "wear out.": The hardware exhibits relatively high failure rates early in

its life (these failures are often attributable to design or manufacturing defects); defects

are corrected and the failure rate drops to a steady-state level (Ideally, quite low) for some

period of time. As time passes, however, the failure rate rises again as hardware

components suffer from the cumulative effects of dust, vibration, abuse, temperature

extremes, and many other environmental maladies.

➢ Most software is custom-built, rather than being assembled from existing components.

Software Applications

Software Engineering Unit - I

3

Software may be applied in any situation for which a pre-specified set of procedural steps

(i.e., an algorithm) has been defined (notable exceptions to this rule are expert system

software and neural network software). Information content and determinacy are important

factors in determining the nature of a software application. Content refers to the meaning

and form of incoming and outgoing information. For example, many business applications

use highly structured input data (a database) and produce formatted “reports.” Software that

controls an automated machine (e.g., a numerical control) accepts discrete data items with

limited structure and produces individual machine commands in rapid succession.

Information determinacy refers to the predictability of the order and timing of information.

◼ system software

◼ application software

◼ engineering/scientific software

◼ embedded software

◼ product-line software

◼ Web Apps (Web applications)

◼ AI software

◼ Legacy Software

System software: System software is a collection of programs written to service other

programs. Some system software (e.g., compilers, editors, and file management utilities)

process complex, but determinate, information structures. Other systems applications (e.g.,

operating system components, drivers, telecommunications processors) process largely

indeterminate data. In either case, the system software area is characterized by heavy

interaction with computer hardware; heavy usage by multiple users; concurrent operation

that requires scheduling, resource sharing, and sophisticated process management; complex

data structures; and multiple external interfaces.

Real-time software. Software that monitors/analyzes/controls real-world events as they occur

is called real time. Elements of real-time software include a data gathering component that

collects and formats information from an external environment, an analysis component that

transforms information as required by the application, a control/output component that

Software Engineering Unit - I

4

responds to the external environment, and a monitoring component that coordinates all other

components so that real-time response (typically ranging from 1 millisecond to 1 second) can

be maintained.

Engineering and scientific software. Engineering and scientific software have been

characterized by "number crunching" algorithms. Applications range from astronomy to

volcanology, from automotive stress analysis to space shuttle orbital dynamics, and from

molecular biology to automated manufacturing. However, modern applications within the

engineering/scientific area are moving away from conventional numerical algorithms.

Computer-aided design, system simulation, and other interactive applications have begun to

take on real-time and even system software characteristics.

Embedded software. Intelligent products have become commonplace in nearly every

consumer and industrial market. Embedded software resides in read-only memory and is

used to control products and systems for the consumer and industrial markets. Embedded

software can perform very limited and esoteric functions (e.g., keypad control for a microwave

oven) or provide significant function and control capability (e.g., digital functions in an

automobile such as fuel control, dashboard displays, and braking systems).

Web-based software. The Web pages retrieved by a browser are software that incorporates

executable instructions (e.g., CGI, HTML, Perl, or Java), and data (e.g., hypertext and a

variety of visual and audio formats). In essence, the network becomes a massive computer

providing an almost unlimited software resource that can be accessed by anyone with a

modem.

Artificial intelligence software. Artificial intelligence (AI) software makes use of non-

numerical algorithms to solve complex problems that are not amenable to computation or

straightforward analysis. Expert systems, also called knowledge based systems, pattern

recognition (image and voice), artificial neural networks, theorem proving, and game playing

are representative of applications within this category.

Legacy Programs/ Legacy Software: Today, a growing population of legacy programs is

forcing many companies to pursue software reengineering strategies. The term legacy

programs are a euphemism for older, often poorly designed and documented software that is

Software Engineering Unit - I

5

business critical and must be supported over many years. Some legacy systems have

relatively solid program architecture, but individual modules were coded in a way that makes

them difficult to understand, test, and maintain. In such cases, the code within the suspect

modules can be restructured.

SDLC – Software Development Life Cycle:

The Software Development Lifecycle is a systematic process for building software that

ensures the quality and correctness of the software built. SDLC process aims to produce high-

quality software which meets customer expectations. The software development should be

complete in the pre-defined time frame and cost. It consists of a detailed plan describing how

to develop, maintain and replace specific software. Software life cycle models describe phases

of the software cycle and the order in which those phases are executed. Each phase produces

deliverables required by the next phase in the life cycle. A typical Software Development Life

Cycle (SDLC) consists of the following phases:

1. Requirement gathering

2. System Analysis

3. Design

4. Development /Implementation or coding

5. Testing

6. Deployment

7. Maintenance

Software Engineering Unit - I

6

1. Requirement gathering:

➢ Requirement gathering and analysis is the most important phase in software development

lifecycle. Business Analyst collects the requirement from the Customer/Client as per the

client’s business needs and documents the requirements in the Business Requirement

Specification.

➢ This phase is the main focus of the project managers and stake holders. Meetings with

managers, stake holders and users are held in order to determine the requirements

like; who is going to use the system? How will they use the system? What data should be

input into the system? What data should be output by the system?

2. Analysis Phase:

➢ Once the requirement gathering and analysis is done the next step is to define and

document the product requirements and get them approved by the customer. This is done

through SRS (Software Requirement Specification) document.

➢ SRS consists of all the product requirements to be designed and developed during the

project life cycle.

Software Engineering Unit - I

7

➢ Key people involved in this phase are Project Manager, Business Analysist and Senior

members of the Team.

➢ The outcome of this phase is Software Requirement Specification.

3. Design Phase:

➢ In this third phase the system and software design is prepared from the requirement

specifications which were studied in the first phase.

➢ System Design helps in specifying hardware and system requirements and also helps in

defining overall system architecture.

➢ There are two kinds of design documents developed in this phase:

➢ High-Level Design (HLD): It gives the architecture of the software product to be developed

and is done by architects and senior developers. It gives brief description and name of

each module. It also defines interface relationship and dependencies between modules,

database tables identified along with their key elements

➢ Low-Level Design (LLD): It is done by senior developers. It describes how each and every

feature in the product should work and how every component should work. Here, only the

design will be there and not the code. It defines the functional logic of the modules,

database tables design with size and type, complete detail of the interface. Addresses all

types of dependency issues and listing of error messages.

4. Coding/Implementation Phase:

➢ In this phase, developers start build the entire system by writing code using the chosen

programming language.

➢ Here, tasks are divided into units or modules and assigned to the various developers. It is

the longest phase of the Software Development Life Cycle process.

➢ In this phase, Developer needs to follow certain predefined coding guidelines. They also

need to use programming tools like compiler, interpreters, debugger to generate and

implement the code.

➢ The outcome from this phase is Source Code Document (SCD) and the developed product.

5. Testing Phase:

Software Engineering Unit - I

8

➢ After the code is developed it is tested against the requirements to make sure that the

product is actually solving the needs addressed and gathered during the requirements

phase.

➢ They either test the software manually or using automated testing tools depends on

process defined in STLC (Software Testing Life Cycle) and ensure that each and every

component of the software works fine. The development team fixes the bug and send back

to QA for a re-test. This process continues until the software is bug-free, stable, and

working according to the business needs of that system.

6. Deployment:

After successful testing the product is delivered / deployed to the customer for their use. As

soon as the product is given to the customers they will first do the beta testing. If any changes

are required or if any bugs are caught, then they will report it to the engineering team. Once

those changes are made or the bugs are fixed then the final deployment will happen.

7. Maintenance:

Software maintenance is a vast activity which includes optimization, error correction, and

deletion of discarded features and enhancement of existing features. Since these changes are

necessary, a mechanism must be created for estimation, controlling and making

modifications. The essential part of software maintenance requires preparation of an

accurate plan during the development cycle. Typically, maintenance takes up about 40-80%

of the project cost, usually closer to the higher pole. Hence, a focus on maintenance definitely

helps keep costs down.

Software Process:

A structured set of activities required to develop a software system. There are many

different software processes but all involve:

➢ Specification – defining what the system should do;

➢ Design and implementation – defining the organization of the system and

implementing the system;

➢ Validation – checking that it does what the customer wants;

➢ Evolution – changing the system in response to changing customer needs.

https://www.softwaretestingmaterial.com/stlc-software-testing-life-cycle/
http://istqbexamcertification.com/what-is-beta-testing/
http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/

Software Engineering Unit - I

9

Software Process Model:

A software process model is an abstract representation of a process. It presents a description

of a process from some particular perspective. When we describe and discuss processes, we

usually think about the activities in these processes such as specifying a data model,

designing a user interface, etc. and the ordering of these activities. There are different models

available.

Water fall Model (Linear-Sequential Life Cycle Model):

➢ The Waterfall Model was first Process Model to be introduced. It is very simple to

understand and use. In a Waterfall model, each phase must be completed before the next

phase can begin and there is no overlapping in the phases.

➢ Waterfall model is the earliest SDLC approach that was used for software development.

➢ In “The Waterfall” approach, the whole process of software development is divided into

separate phases.

➢ The outcome of one phase acts as the input for the next phase sequentially.

➢ This means that any phase in the development process begins only if the previous phase

is complete.

➢ At the end of each phase, a review takes place to determine if the project is on the right

path and whether or not to continue or discard the project.

1. Communication: The major task performed is requirement gathering which helps in

finding out the exact need of the customer. Once all the needs of the customer are gathered

the next step is planning.

http://toolsqa.wpengine.com/software-testing/software-development-life-cycle/

Software Engineering Unit - I

10

2. Planning: Major activities like planning for schedule, keeping tracks on the processes and

the estimation related to the project are done. Planning is even used to find the types of risks

involved throughout the projects. Planning describes how technical tasks are going to take

place and what resources are needed and how to use them.

3. Modeling: This is one the important phases of the architecture of the system is designed in

this phase. Analysis is carried out and depending on the analysis a software model is

designed. Different models for developing software are created depending on the

requirements gathered in the first phase and the planning done in the second phase.

4. Construction: The actual coding of the software is done in this phase. This coding is done

on the basis of the model designed in the modeling phase. So in this phase software is actually

developed and tested.

5. Deployment: In this last phase the product is actually rolled out or delivered & installed

at customer’s end and support is given if required. A feedback is taken from the customer to

ensure the quality of the product.

Advantages of waterfall model:

• This model is simple and easy to understand and use.

• It is easy to manage due to the rigidity of the model – each phase has specific

deliverables and a review process.

• In this model phases are processed and completed one at a time. Phases do not overlap.

• Waterfall model works well for smaller projects where requirements are very well

understood.

 Disadvantages of waterfall model:

• Once an application is in the testing stage, it is very difficult to go back and change

something that was not well-thought out in the concept stage.

• No working software is produced until late during the life cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• Not suitable for the projects where requirements are at a moderate to high risk of

changing.

http://istqbexamcertification.com/what-is-a-software-testing/

Software Engineering Unit - I

11

When to use the waterfall model

• This model is used only when the requirements are very well known, clear and fixed.

• Product definition is stable.

• Technology is understood.

• There are no ambiguous requirements

• Ample resources with required expertise are available freely

• The project is short.

Prototyping Model:

Prototype: Prototype is an early approximation of a final system/product or Prototype is

a working model of software with some limited functionality.

The Software Prototyping refers to building software application prototypes which

displays the functionality of the product under development, but may not actually hold

the exact logic of the original software.

1. The basic idea in Prototype model is that instead of freezing the requirements

before a design or coding can proceed, a throwaway prototype is built to understand

the requirements. This prototype is developed based on the currently known

requirements.

2. A first prototype of the new system is constructed from the preliminary design. This

is usually a scaled-down system, and represents an approximation of the

characteristics of the final product.

3. The users thoroughly evaluate the first prototype, noting its strengths and

weaknesses, what needs to be added, and what should to be removed. The

developer collects and analyzes the remarks from the users.

4. The first prototype is modified, based on the comments supplied by the users, and a

second prototype of the new system is constructed.

5. The second prototype is evaluated in the same manner as was the first prototype.

6. The process of refining the prototype is repeated till all the requirements of users

are met.

Software Engineering Unit - I

12

7. When the users are satisfied with the developed prototype then the system is

developed on the basis of final prototype and it is thoroughly evaluated and tested.

Advantages of Prototyping Model

✓ In the development process of this model users are actively involved.

✓ The development process is the best platform to understand the system by the

user.

✓ Earlier error detection takes place in this model.

✓ It gives quick user feedback for better solutions.

✓ It identifies the missing functionality easily. It also identifies the confusing or

difficult functions.

Disadvantages of Prototyping Model

✓ The client involvement is more and it is not always considered by the developer.

✓ It is a slow process because it takes more time for development.

✓ Many changes can disturb the rhythm of the development team.

✓ It is a throw away prototype when the users are confused with it.

When to use Prototype model:

Software Engineering Unit - I

13

✓ Prototype model should be used when the desired system needs to have a lot of

interaction with the end users.

✓ Typically, online systems, web interfaces have a very high amount of interaction

with end users, are best suited for Prototype model. It might take a while for a

system to be built that allows ease of use and needs minimal training for the end

user.

✓ Prototyping ensures that the end users constantly work with the system and

provide a feedback which is incorporated in the prototype to result in a useable

system. They are excellent for designing good human computer interface systems.

RAD model:

➢ RAD model is Rapid Application Development model. It is a type of incremental model.

➢ In RAD model the components or functions are developed in parallel as if they were mini

projects

➢ The developments are time boxed, delivered and then assembled into a working

prototype.

➢ This can quickly give the customer something to see and use and to provide feedback

regarding the delivery and their requirements.

http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/

Software Engineering Unit - I

14

The phases in the rapid application development (RAD) model are:

• Business modeling: The information flow is identified between various business

functions.

• Data modeling: Information gathered from business modeling is used to define data

objects that are needed for the business.

• Process modeling: Data objects defined in data modeling are converted to achieve the

business information flow to achieve some specific business objective. Descriptions are

identified and created for CRUD of data objects.

• Application generation: Automated tools are used to convert process models into code

and the actual system.

• Testing and turnover: Test new components and all the interfaces.

Advantages of the RAD model:

• Reduced development time.

• Increases reusability of components

• Quick initial reviews occur

Software Engineering Unit - I

15

• Encourages customer feedback

• Integration from very beginning solves a lot of integration issues.

Disadvantages of RAD model:

• Depends on strong team and individual performances for identifying business

requirements.

• Only system that can be modularized can be built using RAD

• Requires highly skilled developers/designers.

• High dependency on modeling skills

• Inapplicable to cheaper projects as cost of modeling and automated code generation is

very high.

When to use RAD model

• RAD should be used when there is a need to create a system that can be modularized

in 2-3 months of time.

• It should be used if there’s high availability of designers for modeling and the budget

is high enough to afford their cost along with the cost of automated code generating

tools.

• RAD SDLC model should be chosen only if resources with high business knowledge are

available and there is a need to produce the system in a short span of time (2-3

months).

Incremental Process model:

➢ The incremental model combines the elements of waterfall model and they are applied in

an iterative fashion.

➢ The first increment in this model is generally a core product.

➢ Multiple development cycles take place. Cycles are divided up into smaller, more easily

managed modules. Each module passes through the requirements, design,

implementation and testing phases.

➢ Each increment builds the product and submits it to the customer for any suggested

modifications.

➢ The next increment implements on the customer's suggestions and add additional

requirements in the previous increment.

http://istqbexamcertification.com/what-is-system-integration-testing/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-a-software-testing/

Software Engineering Unit - I

16

➢ This process is repeated until the product is finished.

For example, the word-processing software is developed using the incremental model.

Advantages of incremental model

• This model is flexible because the cost of development is low and initial product

delivery is faster.

• It is easier to test and debug during the smaller iteration.

• The working software generates quickly and early during the software life cycle.

• The customers can respond to its functionalities after every increment.

Disadvantages of the incremental model

• The cost of the final product may cross the cost estimated initially.

• This model requires a very clear and complete planning.

• The planning of design is required before the whole system is broken into small

increments.

• The demands of customer for the additional functionalities after every increment

causes problem during the system architecture.

Spiral Model:

➢ The spiral model was first mentioned by Barry Boehm in his 1986 paper.

➢ The spiral model is similar to the incremental model, with more emphasis placed on risk

analysis.

➢ The spiral model has four phases: Planning, Risk Analysis, Engineering and Evaluation.

http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/

Software Engineering Unit - I

17

➢ A software project repeatedly passes through these phases in iterations (called Spirals in

this model).

➢ The baseline spiral, starting in the planning phase, requirements is gathered and risk is

assessed. Each subsequent spiral builds on the baseline spiral.

➢ Each phase in spiral model begins with a design goal and ends with the client reviewing

the progress.

Spiral Model Phases:

Spiral Model Phases Activities performed during phase

Planning

➢ It includes estimating the cost, schedule and resources for the iteration.

➢ It also involves understanding the system requirements for continuous

communication between the system analyst and the customer

➢ Requirements are gathered from the customers and the objectives are identified,

elaborated and analyzed at the start of every phase. Then alternative solutions

possible for the phase are proposed in this quadrant.

Risk Analysis ➢ Identification of potential risk is done while risk mitigation strategy is planned and

finalized

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

Software Engineering Unit - I

18

➢ During the second quadrant all the possible solutions are evaluated to select the

best possible solution.

➢ Then the risks associated with that solution is identified and the risks are resolved

using the best possible strategy.

➢ At the end of this quadrant, Prototype is built for the best possible solution.

Engineering

➢ It includes testing, coding and deploying software at the customer site

➢ During the third quadrant, the identified features are developed and verified

through testing. At the end of the third quadrant, the next version of the software is

available.

Evaluation

➢ Evaluation of software by the customer. Also, includes identifying and monitoring

risks such as schedule slippage and cost overrun.

➢ In the fourth quadrant, the Customers evaluate the so far developed version of the

software.

➢ In the end, planning for the next phase is started.

When to use Spiral Methodology?

✓ When project is large

✓ When releases are required to be frequent.

✓ When risk and costs evaluation is important

✓ For medium to high-risk projects

✓ When requirements are unclear and complex

✓ When changes may require at any time

Advantages and Disadvantages of Spiral Model

Advantages Disadvantages

• Additional functionality or changes

can be done at a later stage

• Risk of not meeting the schedule or

budget

• Cost estimation becomes easy as the

prototype building is done in small

fragments

• It works best for large projects only

also demands risk assessment

expertise

• Continuous or repeated development

helps in risk management

• For its smooth operation spiral model

protocol needs to be followed strictly

• Development is fast and features are

added in a systematic way

• Documentation is more as it has

intermediate phases

Software Engineering Unit - I

19

• There is always a space for customer

feedback

• It is not advisable for smaller project,

it might cost them a lot

Win-Win Spiral Methodology:

➢ The win-win spiral approach is very similar to the spiral model in that it is simply an extension

of the spiral model. In the win-win model approach, everyone discusses things together to

figure out what should go into the new version of the software.

➢ The WinWin spiral software engineering methodology expands the Boehm-Spiral

methodology by adding a priority setting step, the WinWin process, at the beginning of each

spiral cycle and by introducing intermediate goals, called anchor points that help establish the

completion of one cycle around the spiral and provide decision milestones before the software

project proceeds.

➢ The WinWin Spiral Model uses Theory W (win-win) to develop software and system

requirements, and architectural solutions, as win conditions negotiated among a project's

stakeholders (user, customer, developer, maintainer, interface, etc.).

➢ Boehm’s WINWIN spiral model defines a set of negotiation activities at the beginning of each

pass around the spiral. Rather than a single customer communication activity, the following

activities are defined:

1. Identification of the system or subsystem’s key “stakeholders.”

2. Determination of the stakeholders’ “win conditions.”

3. Negotiation of the stakeholders’ win conditions to reconcile them into a set of win-win

conditions for all concerned (including the software project team).

➢ Successful completion of these initial steps achieves a win-win result, which becomes the key

criterion for proceeding to software and system definition.

Software Engineering Unit - I

20

➢ In addition to the emphasis placed on early negotiation, the WINWIN spiral model introduces

three process milestone-called anchor points. The anchor points represent three different

views of progress as the project traverses the spiral.

➢ The first anchor point, life cycle objectives (LCO), defines a set of objectives for each major

software engineering activity. For example, as part of LCO, a set of objectives establishes the

definition of top-level system/product requirements.

➢ The second anchor point, life cycle architecture (LCA), establishes objectives that must be met

as the system and software architecture is defined. For example, as part of LCA, the software

project team must demonstrate that it has evaluated the applicability of off-the-shelf and

reusable software components and considered their impact on architectural decisions.

➢ Initial operational capability (IOC) is the third anchor point and represents a set of objectives

associated with the preparation of the software for installation/distribution, site preparation

prior to installation, and assistance required by all parties that will use or support the software.

Software Engineering Unit - I

21

Win win situation can let you get short term benefit but it has its own drawbacks. Some of these

listed below.

Advantages:

1 high amount of risk analysis hence,

avoidance of risk is enhanced

2 good for large and mission critical projects

3 strong approval and documentation control

Disadvantages:

1 can be a costly model to use

2 risk analysis requires highly specific expertise

3 projects success is highly depends on the risk analysis phase

 Ex: Two people were asked to accomplish a job. If one is giving his best and other is just doing it,

then implementing win win for their performance review will give an impact that working hard

doesnt matter. It will create a mental delema that if working hard and working "Just OK" results

in same, then there is no point in working hard. working ok will do. it leads to Loyalty loss. when

a perticular employee's extra efforts are not being treated in proper manner.

1

Unit – II

Project Management Concepts: The Management Spectrum: People, Process, Project and

Product

Software Project Planning: Project planning objectives, Software Scope, Resources, Software

Project Estimation, The Make-Buy Decision, Software Risks.

Software Project Management:

• Software Project management involves planning, monitoring and control of people,

process and event that occurs as software evolves from preliminary concept to fully

operational deployment.

• The Software Project management Spectrum focuses on the four P’s:

 1. People

 2. Product

 3. Process

 4. Project

Refer PPT (forwarded) for notes on 4 Ps

Reasons for the failure of software project

1. Software people don’t understand their customer’s needs.

2. The product scope is poorly defined.

3. Changes are managed poorly.

4. The chosen technology changes.

5. Business needs change.

6. Deadlines are unrealistic.

7. Users are resistant.

8. Sponsorship is lost.

9. The project team lacks people with appropriate skills.

10. Managers [and practitioners] avoid best practices and lessons learned.

Software Project Planning

Project planning is the process of identifying and planning the activities required to build a
software product. Planning will improve a project’s outcome, it requires you to make an initial
commitment. Effective planning is needed to resolve problems upstream [early in the project] at
low cost, rather than downstream [late in the project] at high cost. Planning is one
of the most important management activities and is an ongoing effort
throughout the life of the project.

Project Planning Objectives

2

• The objective of software project planning is to provide a framework that enables the

Manager to make reasonable estimates of:
➢ Estimation of resources

➢ Estimation of cost

➢ Estimation of schedule

These estimates are made within a limited time frame at the beginning of a software
project and should be updated regularly as the project progresses.

• In addition, estimates should attempt to define best case and worst-case scenarios so

that project outcomes can be bounded.

• The overall goal of project planning is to establish a pragmatic strategy for controlling,

tracking and monitoring a complex technical project.

• The purpose of the project planning is to ensure that the end result is completed on

time, within budget and exhibits quality.

Task Set for Project Planning

1. Establish Project Scope.

2. Determine Feasibility.

3. Analyze risks

4. Define required resources.

 a. Determine required human resources.

 b. Define reusable software resources.

 c. Identify environmental resources.

5. Estimate cost and effort.

 a. Decompose the problem.

 b. Develop two or more estimates using size, function

 points, process tasks, or use cases.

 c. Reconcile the estimates.

6. Develop a project schedule

 a. Establish a meaningful task set.

 b. Define a task network.

 c. Use scheduling tools to develop a time-line chart.

 d. Define schedule tracking mechanisms.

SOFTWARE SCOPE

• Scope identifies the primary data, functions, and behaviors that characterize the product,

and more important, attempts to bound these characteristics in a quantitative manner.

• Software scope describes

• The functions and features that are to be delivered to end users

• The data that are input and output

• The “content” that is presented to users as a consequence of using the software;

3

• The performance, constraints, interfaces, and reliability that bound the system.

• Scope is defined using one of two techniques:

1. A narrative description of software scope is developed after communication with all

 stakeholders.

2. A set of use cases is developed by end users.

• Functions described in the statement of scope (or within the use cases) are evaluated and

in some cases refined to provide more detail prior to the beginning of estimation.

• Performance considerations encompass processing and response time requirements.

• Constraints identify limits placed on the software by external hardware, available

memory, or other existing systems.

• Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or business

context, and what constraints are imposed as a result of the context?

Information objectives. What customer-visible data objects are produced as output from

the software? What data objects are required for input?

Function and performance. What function does the software perform to transform input

data into output? Are any special performance characteristics to be addressed?

• Software project scope must be unambiguous and understandable at the management

and technical levels.

• A statement of software scope must be bounded.

SOFTWARE FEASIBILITY

• Once scope has been identified project feasible analysis need to be made.

• Software feasibility has four dimensions

◦ Technology –Technical feasibility concentrates on the availability of technology

(software and hardware) and cost of technology.

◦ Finance – Financially feasibility concentrates on the cost incurred for the

development of software product. cost benefit analysis is made to make a

decision.

◦ Time –The time taken to build a software product is estimated and it is verified

whether l the project's time-to-market beat the competition?

◦ Resources – Does the software organization have the resources needed to

succeed in

 doing the project?

DEFINE REQUIRED RESOURCES.

4

• The important planning task is estimation of the resources required to accomplish the

software development effort.

• Each resource is specified with

◦ A description of the resource

◦ A statement of availability

◦ The time when the resource will be required

◦ The duration of time that the resource will be applied

• Three major categories of software engineering resources

a. Determine required human resources.

b. Define reusable software resources.

c. Identify environmental resources.

7

Human Resource(People)

- Number required

- Skills required

- Geographical location

Development Environment

- Software tools

- Computer hardware

- Network resources

Reusable Software Components

- Off-the-shelf components

- Full-experience components

- Partial-experience components

- New components

The

Project

Human Resources

• The Planners need to select the number and the kind of people skills needed to complete

the project

• They need to specify the organizational position and job specialty for each person

• Small projects of a few person-months may only need one individual

• Large projects spanning many person-months or years require the location of the person

to be specified also

• The number of people required can be determined only after an estimate of the

development effort

Reusable Software Resources

• Component-based software engineering emphasizes reusability—that is, the creation

and reuse of software building blocks. Such building blocks, often called components,

must be cataloged for easy reference, standardized for easy application, and validated for

easy integration.

• Reusable software components can be classified into the following categories

Off-the-shelf components

o Components are from a third party or were developed for a previous project

o Ready to use; fully validated and documented; virtually no risk

5

Full-experience components

o Components are similar to the software that needs to be built

o Software team has full experience in the application area of these components

o Modification of components will incur relatively low risk

Partial-experience components

o Components are related somehow to the software that needs to be built but will

require substantial modification

o Software team has only limited experience in the application area of these

components

o Modifications that are required have a fair degree of risk

New components

o Components must be built from scratch by the software team specifically for the

needs of the current project

o Software team has no practical experience in the application area

o Software development of components has a high degree of risk

Environmental Resources.

• A software engineering environment (SEE) incorporates hardware, software, and network

resources that provide platforms and tools to develop and test software work products.

• Most software organizations have many projects that require access to the SEE provided

by the organization

• Planners must identify the time window required for hardware and software and verify

that these resources will be available

PROJECT ESTIMATION

• Project Estimation is the process of estimating the cost , time, resources and effort

required to build a software product.

• The accuracy of a software project estimate is predicated on

◦ The degree to which the planner has properly estimated the size (e.g., KLOC) of

the product to be built

◦ The ability to translate the size estimate into human effort, calendar time, and

money

◦ The degree to which the project plan reflects the abilities of the software team

◦ The stability of both the product requirements and the environment that supports

the software engineering effort

• Project Estimation is done through the following steps

 a. Decompose the problem.

 b. Develop two or more estimates using size, function points, process tasks, or use

cases.

6

 c. Reconcile the estimates.

• Project Estimation can be performed in the following ways

◦ Delay estimation until late in the project (we should be able to achieve 100%

accurate estimates after the project is complete)

◦ Base estimates on similar projects that have already been completed

◦ Use relatively simple decomposition techniques to generate project cost and

effort estimates

◦ Use one or more empirical estimation models for software cost and effort

estimation.

Explain various categories of SOFTWARE RISKS

• Risk Analysis and management are activities that help a software team to understand

uncertainty.

• Risk exhibits two characteristics

1. Uncertainty: The occurrence of risk is uncertain that is risk may or may not occur.

2. Loss: If the risk becomes a reality, unwanted consequences or losses will occur.

• When risks are analyzed, it is important to quantify the level of uncertainty and the degree

of loss associated with each risk.

Different categories of risks are:

Project risks:

• They threaten the project plan.

• That is, if project risks become real, it is likely that the project schedule will slip and

that costs will increase.

• Project risks identify potential budgetary, schedule, personnel (staffing and

organization), resource, stakeholder, and requirements problems and their impact on

a software project.

Technical risks:

✓ They threaten the quality and timeliness of the software to be produced.

✓ If a technical risk becomes a reality, implementation may become difficult or

impossible.

✓ Technical risks identify potential design, implementation, interface, verification, and

 Maintenance problems.

Business risks :

7

✓ They threaten the viability of the software to be built and often jeopardize the project

or the

 Product.

 Candidates for the top five business risks are

(1) Market risk: building an excellent product or system that no one really wants

(2) Strategic risk: building a product that no longer fits into the overall business strategy

for the company

 (3) Sales risk: building a product that the sales force doesn’t understand how to sell.

 (4) Management risk: losing the support of senior management due to a change in focus

or a

 Change in people

 (5) Budget risks: losing budgetary or personnel commitment.

✓ Known risks are those that can be uncovered after careful evaluation of the project plan,

the business and technical environment in which the project is being developed, and

other reliable information sources (e.g., unrealistic delivery date, lack of documented

requirements or software scope, poor development environment).

✓ Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance

requests are serviced).

✓ Unpredictable risks are the joker in the deck. They can and do occur, but they are

extremely difficult to identify in advance.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 1

UNIT - III

Analysis Concepts Principles: Requirements Analysis, Requirements Elicitation for Software-

Initiating the Process, Facilitated Application Specification Techniques, Quality Function

Deployment, Use Cases, Analysis Principle’s, The Software Requirement Specification (Ch 11)

Software Analysis Concepts and Principles

Software Analysis Concepts and Principles

The overall role of software in large system is identified during system engineering. However, it’s

necessary to take a harder look at software’s role to understand the specific requirements that

must be achieved to build high-quality software. That’s the job of software requirements analysis.

To perform the job properly you should follow a set of underlying concepts and principles.

1. Requirements Analysis

➢ Requirement analysis is a software engineering task that bridges the gap between system

level requirements engineering and software design.

➢ Requirements engineering activities result in the specification of software’s operational

characteristics, indicate software’s interface with other system elements, and establish

constraints that software must meet.

➢ Requirement analysis allows the software engineer to refine domains that will be treated by

software.

➢ Requirements analysis provides the software designer with a representation of information,

function, and behavior that can be translated to data, architectural, interface, and

component-level designs.

➢ Software requirements analysis may be divided into five areas of effort:

https://srinutamada1.wordpress.com/2008/10/09/software-analysis-concepts-and-principles/

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 2

(1) problem recognition,

(2) evaluation and synthesis,

(3) modeling,

(4) specification, and

(5) review.

➢ The analyst studies the system specification and the software Project Plan. It is important to

understand software in a system context and to review the software scope that was used to

generate planning estimates.

➢ Problem evaluation and solution synthesis is the next major area of effort for analysis. The

analyst must define all externally observable data objects, evaluate the flow and content of

information, define and elaborate all software functions, understand software behavior in

the context of events that affect the system, establish system interface characteristics, and

uncover additional design constraints.

➢ Throughout evaluation and solution synthesis, the analyst’s primary focus is on “what” not

“how”. What data does the system produce and consume, what functions must the system

perform, what behavior does the system exhibit, what interfaces are defined and what

constraints apply?

➢ During the evaluation and solution synthesis activity, the analyst creates models of the

system in an effort to better understand data and control flow, functional processing,

operational behavior, and information content.

➢ The model serves as a foundation for software design and as the basis for the creation of

specifications for the software.

2. Requirements Elicitation for Software

➢ Before requirements can be analyzed, modeled, or specified they must be gathered through

an elicitation process.

➢ A customer has a problem that may be amenable to a computer-based solution. A developer

responds to the customer's request for help.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 3

➢ Communication Analysis techniques are as follows

2.1 Initiating the Process

➢ The most commonly used requirements elicitation technique is to conduct a meeting or

interview.

➢ The first meeting between a software engineer (the analyst) and the customer can be

awkward.

➢ The analyst starts by asking context-free questions. That is, a set of questions that will lead

to a basic understanding of the problem, the people who want a solution, the nature of the

solution that is desired, and the effectiveness of the first encounter itself.

➢ The first set of context-free questions focuses on the customer, the overall goals, and the

benefits. For example, the analyst might ask:

➢ Who is behind the request for this work?

➢ Who will use the solution?

➢ What will be the economic benefit of a successful solution?

➢ Is there another source for the solution that you need?

➢ These questions help to identify all stakeholders who will have interest in the software to be

built.

➢ In addition, the questions identify the measurable benefit of a successful implementation

and possible alternatives to custom software development.

➢ The next set of questions enables the analyst to gain a better understanding of the problem

and the customer to voice his or her perceptions about a solution:

➢ How would you characterize "good" output that would be generated by a successful solution?

➢ What problem(s) will this solution address?

➢ Can you show me (or describe) the environment in which the solution will be used?

➢ Will special performance issues or constraints affect the way the solution is approached?

➢ The final set of questions focuses on the effectiveness of the meeting.

➢ These questions (and others) will help to "break the ice" and initiate the communication that

is essential to successful analysis.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 4

➢ But a question and answer meeting format is not an approach that has been overwhelmingly

successful. In fact, the Q&A session should be used for the first encounter only and then

replaced by a meeting format that combines elements of problem solving, negotiation, and

specification.

2.2 Facilitated Application Specification Techniques(FAST)

➢ Customers and software engineers have an unconscious “us and them” mind-set. With these

problems in the mind that a number of independent investigators have developed a team-

oriented approach to requirements gathering that is applied during early stages of analysis

and specification called facilitated application technique (FAST).

➢ Facilitated application specification techniques (FAST), approach encourages the creation of

a joint team of customers and developers who work together to identify the problem,

propose elements of the solution, negotiate different approaches and specify a preliminary

set of solution requirements.

➢ FAST has been used predominantly by the information systems community, but the

technique offers potential for improved communication in applications of all kinds.

➢ Basic guidelines for this technique are:

➢ A meeting is conducted at a neutral site and attended by both software engineers

and customers.

➢ Rules for preparation and participation are established.

➢ An agenda is suggested that is formal enough to cover all important points but

informal enough to encourage the free flow of ideas.

➢ A “facilitator” controls the meeting.

➢ A “definition mechanism” is used

➢ The goal is to identify the problem, propose elements of the solution, negotiate

different approaches, and specify a preliminary set of solution requirements in an

atmosphere that is conductive to the accomplishment of the goal.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 5

➢ A meeting place, time, and date for FAST are selected and a facilitator is chosen. Attendees

from both the development and customer/user organizations are invited to attend. The

product request is distributed to all attendees before the meeting date.

➢ Initial meeting between the developer and customer occur and basic questions and answers

help to establish the scope of the problem and the overall perception of a solution. The

product request distributed to all attendees before the meeting date.

➢ The FAST team is composed of representatives from marketing, software and hardware

engineering, and manufacturing.

➢ As the FAST meeting begins, the first topic of discussion is the need and justification for the

new product – everyone should agree that the product justified. Once agreement has been

established, each participant his or her list for discussion.

➢ After individual lists are presented in one topic area, a combined list is created by the group.

The combined list eliminates redundant entries, adds any new ideas that come up during the

discussion, but does not delete anything. The combined list is shortened, lengthened, or

reworded to properly reflect the product or system to be developed.

➢ The objective is to develop a consensus list in each topic area. Each sub team presents its

mini-specs to all FAST attendees for discussion. After the mini-specs are completed, each

FAST attendee makes a list of validation criteria for the product or system and presents his

or her to the team.

2.3 Quality Function Deployment(QFD)

➢ Quality function deployment (QFD) is a quality management technique that translates the

needs of the customer into technical requirements for software.

➢ QFD “concentrates on maximizing customer satisfaction from the software engineering

process.

➢ QFD emphasizes an understanding of what is valuable to the customer and then deploys

these values throughout the engineering process.

➢ QFD identifies three types of requirements:

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 6

1. Normal requirements. The objectives and goals that are stated for a product or system

during meeting with customer. If these requirements are present, the customer is satisfied.

Examples of normal requirements might be requested types of graphical displays, specific

system functions, and defined levels of performance.

2. Expected requirements. These requirements are implicit to the product or system and may

be so fundamental that the customer does not explicitly state them. Their absence will be a

cause for significant dissatisfaction.

Examples of expected requirements are: ease of human/machine interaction, overall

operational correctness and reliability, and ease of software installation.

3. Exciting requirements. These features go beyond the customer’s expectations and prove to

be very satisfying when present.

For example, word processing software is requested with standard features. The delivered

product contains a number of page layout capabilities that are quite pleasing and

unexpected.

Functional deployment is used to determine the value of each function that is required for the

system. Information deployment identifies both the data objects and events that the system

must consume and produce. These are tied to the functions. Finally, task deployment examines

the behavior of the system or product within the context of its environment. Value analysis is

conducted to determine the relative priority of requirements determined during each of the

three deployments.

2.4. Use-Cases

➢ As requirements are gathered as part of informal meetings, FAST, or QFD, the software

engineer (analyst) can create a set of scenarios that identify a thread of usage for the system

to be constructed.

➢ The scenarios, often called use-cases, provide a description of how the system will be used.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 7

➢ To create a use-case, the analyst must first identify the different types of people (or devices)

that use the system or product. These actors actually represent roles that people (or devices)

play as the system operates.

➢ Defined somewhat more formally, an actor is anything that communicates with the system

or product and that is external to the system itself. It’s most important to note that an actor

and a user are not the same thing.

➢ An actor represents a class of external entities that play just one role. Once actors have been

identified, use-case can be developed.

➢ The use-case describes the manner in which an actor interacts with the system. The use-case

should be answer below questions:

• What main tasks or functions are performed by an actor?

• What system information will the actor acquire, produce, or change?

• Will the actor have to inform the system about changes in the external environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected changes?

In general, use-case is simply a written narrative that describes the role of an actor as interaction

with the system occurs.

3. Analysis Principles

 Over the past two decades, a large number of analysis modeling methods have been developed.

Investigators have identified analysis problems and their causes and have developed a variety of

notations and corresponding sets of heuristics to overcome them. Each analysis method has a

unique point of view.

➢ The information domain of a problem must be represented and understood.

➢ The functions that the software is to perform must be defined.

➢ The behavior of the software must be represented.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 8

➢ The models that depict information function and behavior must be partitioned in a

manner that uncovers details in a layered fashion.

➢ The analysis process should move from essential information toward implementation

detail.

By applying these principles, the analyst approaches a problem systematically. The

information domain is examined so that function may be understood more completely.

Models are used so that the characteristics of function and behavior can be communicated

in a compact fashion. Partitioning is applied to reduce complexity. Essential and

implementation views of the software are necessary to accommodate the logical constraints

imposed by processing requirements and the physical constraints imposed by other system

elements.

In addition to these operational analysis principles for requirements engineering are:

➢ Understand the problem before you begin to create the analysis model.

➢ Develop prototype that enable a user to understand how human/machine interaction will

occur.

➢ Record the origin of and the reason for every requirement. This is the first step in

establishing traceability back to the customer.

➢ Use multiple views of requirements. Building data, functional, and behavioral models

provide the software engineer with three different views. This reduces the likelihood that

something will be missed and increases the likelihood that inconsistency will be

recognized.

➢ Rank requirements.

➢ Work to eliminate ambiguity. . Because most requirements are described in a natural

language, the opportunity for ambiguity abounds. The use of formal technical reviews is

one way to uncover and eliminate ambiguity.

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 9

4.0 Specification

Specification principles

➢ Separate functionality from implementation

➢ Develop a model of the desired behavior of a system that encompasses data and

functional response of a system to various stimuli from the environment

➢ Establish the context in which software operates by specifying the manner in

which other systems components interact with software

➢ Define the environment in which the system operates and indicate how “a highly

intertwined collection of agents react to stimuli in the environment (changes to

objects) produced by those agents”

➢ Create a cognitive model rather than a design or implementation model. The

cognitive model describes a system as perceived by its user community

➢ Recognize that “the specifications must be tolerant of incompleteness and

augmentable.” A specification is always a model-an abstraction-of some real

situation that is normally quite complex. Hence, it will be incomplete and will

exist at many level of detail

➢ Establish the content and structure of a specification in a way that will enable it

to be amenable to change

 Representation

➢ Representation format and content should be relevant to the problem

➢ Information contained within the specification should be nested

➢ Diagrams and other notational forms should be restricted in number and

consistent in use

➢ Representations should be revisable

 The software requirements specification

Unit – III Software Engineering

St Joseph ‘s Degree& PG College 10

➢ Is produced at the culmination of analysis task.

➢ The function and performance allocated to software as part of system

engineering are refined by establishing a complete information description, a

detailed functional description, a representation of system behavior, an

indication of performance requirements and design constraints, appropriate

validation criteria, and other information pertinent to requirements.

➢ Format of software requirements specification:

o Introduction

o Information description

o Functional description

o Behavioral description

o Validation criteria

o Bibliography and appendix

5.0 Specification Review

• A review of the Software Requirements Specification is conducted by both the

software developer and the customer.

• Because the specification forms the foundation of the development phase,

extreme care should be taken into conducting the review.

• Once the review is complete, the Software Requirements Specification is “signed-

off” by both the customer and developer.

The specification becomes a “contract” for software development

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 1

UNIT IV

Design Concepts Principles: The Design Process, Design Principles, Design Concepts – Abstraction,

Refinement, Modularity, Software Architecture, Control Hierarchy, Structural Partitioning, Data Structure,

Software Procedure, Information Hiding, Effective Modular Design – Functional Independence, Cohesion,

Coupling (Ch 13)

Design Process:

➢ Software design is a process to transform user requirements into some suitable

form, which helps the programmer in software coding and implementation.

➢ Software design is the first step in SDLC (Software Design Life Cycle), which

moves the concentration from problem domain to solution domain. It tries to

specify how to fulfill the requirements mentioned in SRS.

➢ The main aim of design engineering is to generate a model which shows

firmness, delight and commodity.

➢ Software design is a phase in software engineering, in which a blueprint is

developed to serve as a base for constructing the software system.

➢ The design process comprises a set of principles, concepts and practices, which

allow a software engineer to model the system or product that is to be built. This

model, known as design model, is assessed for quality and reviewed before code

is generated and tests are conducted.

➢ IEEE defines software design as 'both a process of defining, the architecture,

components, interfaces, and other characteristics of a system or component and

the result of that process.'

Three characteristics serve as a guide for the evaluation of a good design:

➢ The design must implement all of the explicit requirements contained in the

analysis model, and it must accommodate all of the implicit requirements

desired by the customer.

➢ The design must be a readable, understandable guide for those who generate

code and for those who test and subsequently support the software.

➢ The design should provide a complete picture of the software, addressing the

data, functional, and behavioral domains from an implementation perspective.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 2

Quality Guidelines

In order to evaluate the quality of a design representation, we must establish
technical criteria for good design.

1. A design should exhibit an architecture that:

o Has been created using recognizable architectural styles or patterns,

o Is composed of components that exhibit good design characteristics

2. A design should be modular; that is, the software should be logically partitioned

into elements or subsystems

3. A design should contain distinct representations of data, architecture,

interfaces, and components.

4. A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional

characteristics.

6. A design should lead to interfaces that reduce the complexity of connections

between components and with the external environment.

7. A design should be represented using a notation that effectively communicates

its meaning.

Design Principles:

Some of the commonly followed design principles are as following.

1. Software design should correspond to the analysis model: Often a design element

corresponds to many requirements, therefore, we must know how the design model

satisfies all the requirements represented by the analysis model.

2. Choose the right programming paradigm: A programming paradigm describes the

structure of the software system. Depending on the nature and type of application,

different programming paradigms such as procedure oriented, object-oriented, and

prototyping paradigms can be used. The paradigm should be chosen keeping

constraints in mind such as time, availability of resources and nature of user's

requirements.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 3

3. Software design should be uniform and integrated: Software design is considered

uniform and integrated, if the interfaces are properly defined among the design

components. For this, rules, format, and styles are established before the design team

starts designing the software.

4. Software design should be flexible: Software design should be flexible enough to

adapt changes easily. To achieve the flexibility, the basic design concepts such as

abstraction, refinement, and modularity should be applied effectively.

5. Software design should ensure minimal conceptual (semantic) errors: The design

team must ensure that major conceptual errors of design such as ambiguousness and

inconsistency are addressed in advance before dealing with the syntactical errors

present in the design model.

6. Software design should be structured to degrade gently: Software should be designed

to handle unusual changes and circumstances, and if the need arises for termination,

it must do so in a proper manner so that functionality of the software is not affected.

7. Software design should represent correspondence between the software and real-

world problem: The software design should be structured in such away that it always

relates with the real-world problem.

8. Software reuse: Software engineers believe on the phrase: 'do not reinvent the

wheel'. Therefore, software components should be designed in such a way that they

can be effectively reused to increase the productivity.

9. Designing for testability: A common practice that has been followed is to keep the

testing phase separate from the design and implementation phases. That is, first the

software is developed (designed and implemented) and then handed over to the

testers who subsequently determine whether the software is fit for distribution and

subsequent use by the customer. However, it has become apparent that the process

of separating testing is seriously flawed, as if any type of design or implementation

errors are found after implementation, then the entire or a substantial part of the

software requires to be redone. Thus, the test engineers should be involved from the

initial stages. For example, they should be involved with analysts to prepare tests for

determining whether the user requirements are being met.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 4

10. Prototyping: Prototyping should be used when the requirements are not completely

defined in the beginning. The user interacts with the developer to expand and refine

the requirements as the development proceeds. Using prototyping, a quick 'mock-up'

of the system can be developed. This mock-up can be used as a effective means to give

the users a feel of what the system will look like and demonstrate functions that will

be included in the developed system. Prototyping also helps in reducing risks of

designing software that is not in accordance with the customer's requirements.

Note that design principles are often constrained by the existing hardware

configuration, the implementation language, the existing file and data structures,

and the existing organizational practices. Also, the evolution of each software design

should be meticulously designed for future evaluations, references and maintenance.

Software Design Concepts

Every software process is characterized by basic concepts along with certain practices

or methods. Methods represent the manner through which the concepts are applied.

As new technology replaces older technology, many changes occur in the methods that

are used to apply the concepts for the development of software. However, the

fundamental concepts underlining the software design process remain the same,

some of which are described here.

Abstraction

➢ Abstraction refers to a powerful design tool, which allows software designers to

consider components at an abstract level, while neglecting the implementation

details of the components.

➢ IEEE defines abstraction as a view of a problem that extracts the

essential information relevant to a particular purpose and ignores the remainder

of the information.

➢ The concept of abstraction can be used in two ways: as a process and as an entity.

As a process, it refers to a mechanism of hiding irrelevant details and

representing only the essential features of an item so that one can focus on

important things at a time. As an entity, it refers to a model or view of an item.

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 5

➢ Each step in the software process is accomplished through various levels of

abstraction. At the highest level, an outline of the solution to the problem is

presented whereas at the lower levels, the solution to the problem is presented in

detail.

➢ For example, in the requirements analysis phase, a solution to the problem is

presented using the language of problem environment and as we proceed through

the software process, the abstraction level reduces and at the lowest level, source

code of the software is produced.

There are three commonly used abstraction mechanisms in software design, namely,

functional abstraction, data abstraction and control abstraction. All these

mechanisms allow us to control the complexity of the design process by proceeding

from the abstract design model to concrete design model in a systematic manner.

1. Functional abstraction: This involves the use of parameterized subprograms.

Functional abstraction can be generalized as collections of subprograms referred to

as 'groups'. Within these groups there exist routines which may be visible or hidden.

Visible routines can be used within the containing groups as well as within other

groups, whereas hidden routines are hidden from other groups and can be used within

the containing group only.

2. Data abstraction: This involves specifying data that describes a data object. For

example, the data object window encompasses a set of attributes (window type,

window dimension) that describe the window object clearly. In this abstraction

mechanism, representation and manipulation details are ignored.

3. Control abstraction: This states the desired effect, without stating the exact

mechanism of control. For example, if and while statements in programming

languages (like C and C++) are abstractions of machine code implementations, which

involve conditional instructions. In the architectural design level, this abstraction

mechanism permits specifications of sequential subprogram and exception handlers

without the concern for exact details of implementation.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 6

Architecture

Software architecture refers to the structure of the system, which is composed of

various components of a program/ system, the attributes (properties) of those

components and the relationship amongst them. The software architecture enables

the software engineers to analyze the software design efficiently. In addition, it also

helps them in decision-making and handling risks. The software architecture does

the following.

• Provides an insight to all the interested stakeholders that enable them to

communicate with each other

• Highlights early design decisions, which have great impact on the software

engineering activities (like coding and testing) that follow the design phase

• Creates intellectual models of how the system is organized into components and how

these components interact with each other.

Currently, software architecture is represented in an informal and unplanned

manner. Though the architectural concepts are often represented in the

infrastructure (for supporting particular architectural styles) and the initial stages

of a system configuration, the lack of an explicit independent characterization of

architecture restricts the advantages of this design concept in the present scenario.

Note that software architecture comprises two elements of design model, namely,

data design and architectural design.

Modularity

Modularity is achieved by dividing the software into uniquely named and addressable

components, which are also known as modules. A complex system (large program) is

partitioned into a set of discrete modules in such a way that each module can be

developed independent of other modules. After developing the modules, they are

integrated together to meet the software requirements. Note that larger the number

of modules a system is divided into, greater will be the effort required to integrate

the modules.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 7

Modularizing a design helps to plan the development in a more effective manner,

accommodate changes easily, conduct testing and debugging effectively and

efficiently, and conduct maintenance work without adversely affecting the

functioning of the software.

Information Hiding

Modules should be specified and designed in such a way that the data structures and

processing details of one module are not accessible to other modules. They pass only

that much information to each other, which is required to accomplish the software

functions. The way of hiding unnecessary details is referred to as information hiding.

IEEE defines information hiding as 'the technique of encapsulating software design

decisions in modules in such a way that the module's interfaces reveal as little as

possible about the module's inner workings; thus each module is a 'black box' to the

other modules in the system.

http://ecomputernotes.com/images/Modules-in-Software-Programs.jpg

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 8

Information hiding is of immense use when modifications are required during the

testing and maintenance phase. Some of the advantages associated with information

hiding are listed below.

1. Leads to low coupling

2. Emphasizes communication through controlled interfaces

3. Decreases the probability of adverse effects

4. Restricts the effects of changes in one component on others

5. Results in higher quality software.

Stepwise Refinement

Stepwise refinement is a top-down design strategy used for decomposing a system

from a high level of abstraction into a more detailed level (lower level) of abstraction.

At the highest level of abstraction, function or information is defined conceptually

without providing any information about the internal workings of the function or

internal structure of the data. As we proceed towards the lower levels of abstraction,

more and more details are available.

Software designers start the stepwise refinement process by creating a sequence of

compositions for the system being designed. Each composition is more detailed than

the previous one and contains more components and interactions. The earlier

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 9

compositions represent the significant interactions within the system, while the later

compositions show in detail how these interactions are achieved.

To have a clear understanding of the concept, let us consider an example of stepwise

refinement. Every computer program comprises input, process, and output.

1. INPUT

• Get user's name (string) through a prompt.

• Get user's grade (integer from 0 to 100) through a prompt and validate.

2. PROCESS

3. OUTPUT

This is the first step in refinement. The input phase can be refined further as given

here.

1. INPUT

o Get user's name through a prompt.

o Get user's grade through a prompt.

o While (invalid grade)

Ask again:

2. PROCESS

3. OUTPUT

Note: Stepwise refinement can also be performed for PROCESS and OUTPUT phase.

Refactoring

Refactoring is an important design activity that reduces the complexity of module

design keeping its behavior or function unchanged. Refactoring can be defined as a

process of modifying a software system to improve the internal structure of design

without changing its external behavior. During the refactoring process, the existing

design is checked for any type of flaws like redundancy, poorly constructed algorithms

and data structures, etc., in order to improve the design. For example, a design model

might yield a component which exhibits low cohesion (like a component performs four

functions that have a limited relationship with one another). Software designers may

decide to refactor the component into four different components, each exhibiting high

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 10

cohesion. This leads to easier integration, testing, and maintenance of the software

components.

Control Hierarchy (Program Structure)

• Control hierarchy, also called program structure, represents the organization

of program components (modules) and implies a hierarchy of control.

• Depth and Width provide an indication of the number of levels of control and

overall span of control, respectively.

• Fan-out is a measure of the number of modules that are directly controlled by

another module. Fan-in specifies how many modules directly control a given a

module

• A module that controls another module is said to be superordinate to it, and

conversely, a module controlled by another is said to be subordinate to the

controller

Structural Partitioning

When the architectural style of a design follows a hierarchical nature, the structure

of the program can be partitioned either horizontally or vertically.

In horizontal partitioning, the control modules are used to communicate between

functions and execute the functions. Structural partitioning provides the following

benefits.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 11

• The testing and maintenance of software becomes easier.

• The negative impacts spread slowly.

• The software can be extended easily.

Besides these advantages, horizontal partitioning has some disadvantage also. It

requires to pass more data across the module interface, which makes the control flow

of the problem more complex. This usually happens in cases where data moves

rapidly from one function to another.

In vertical partitioning, the functionality is distributed among the modules--in a top-

down manner. The modules at the top level called control modules perform the

decision-making and do little processing whereas the modules at the low level

called worker modules perform all input, computation and output tasks.

Data Structure

• Data structure is a representation of the logical relationship among

individual elements of data. Data structure dictates the organization,

methods of access, degree of associativity, and processing alternatives for

information.

• The organization and complexity of a data structure are limited only by the

skill of the designer.

• Limited number of classic data structures that form the building blocks for

more sophisticated structures.

• Scalar Items, vectors, and spaces may be organized in a variety of formats

http://ecomputernotes.com/images/Horizontal-and-Vertical-Partitioning.jpg

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 12

Developing a Design Model

To develop a complete specification of design (design model), four design models are

needed. These models are listed below.

1. Data design: This specifies the data structures for implementing the software by

converting data objects and their relationships identified during the analysis phase.

Various studies suggest that design engineering should begin with data design, since

this design lays the foundation for all other design models.

2. Architectural design: This specifies the relationship between the structural elements

of the software, design patterns, architectural styles, and the factors affecting the

ways in which architecture can be implemented.

3. Component-level design: This provides the detailed description of how structural

elements of software will actually be implemented.

4. Interface design: This depicts how the software communicates with the system that

interoperates with it and with the end-users.

http://ecomputernotes.com/images/Design-Model-and-its-Elements.jpg

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 13

Effective Modular Design:

A modular design reduces complexity, facilitates change, and results in easier

implementation by encouraging parallel development of different parts of a system.

Functional Independence

• The concept of functional independence is a direct outgrowth of modularity

and the concepts of abstraction and information hiding.

• Independent modules are easier to maintain (and test) because secondary

effects caused by design or code modification are limited, error propagation

is reduced, and reusable modules are possible.

• Independence is measured using two qualitative criteria: cohesion and

coupling.

• A module having high cohesion and low coupling is said to be functionally independent

of other modules. By the term functional independence, we mean that a cohesive module

performs a single task or function. A functionally independent module has minimal

interaction with other modules.

Need for functional independence

Functional independence is a key to any good design due to the following reasons:

• Error isolation: Functional independence reduces error propagation. The reason behind this

is that if a module is functionally independent, its degree of interaction with the other modules

is less. Therefore, any error existing in a module would not directly affect the other modules.

• Scope of reuse: Reuse of a module becomes possible. Because each module does some

well-defined and precise function, and the interaction of the module with the other modules is

simple and minimal. Therefore, a cohesive module can be easily taken out and reused in a

different program.

• Understandability: Complexity of the design is reduced, because different modules can be

understood in isolation, as modules are more or less independent of each other.

Cohesion and coupling:

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 14

Coupling

• Coupling is a measure of interconnection among modules in a software

structure.

• In software engineering, the coupling can be defined as the measurement to

which the components of the software depend upon each other.

• Coupling is the measure of the degree of interdependence between the

modules. A good software will have low coupling.

Types of Coupling:

▪ Data Coupling:

If the dependency between the modules is based on the fact that they

communicate by passing only data, then the modules are said to be data coupled.

In data coupling, the components are independent to each other and

communicating through data.

▪ Stamp Coupling:

In stamp coupling, the complete data structure is passed from one module to

another module.

▪ Control Coupling:

If the modules communicate by passing control information, then they are said

to be control coupled. It can be bad if parameters indicate completely different

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 15

behavior and good if parameters allow factoring and reuse of functionality.

Example- sort function that takes comparison function as an argument.

▪ External Coupling:

In external coupling, the modules depend on other modules, external to the

software being developed or to a particular type of hardware. Ex- protocol,

external file, device format, etc.

▪ Common Coupling: The modules have shared data such as global data

structures.

▪ Content Coupling:

In a content coupling, one module can modify the data of another module or

control flow is passed from one module to the other module. This is the worst

form of coupling and should be avoided.

Cohesion:

• Cohesion is a measure of the relative functional strength of a module.

• Cohesion can be defined as the degree of the closeness of the relationship

between its components. In general, it measures the relationship strength

between the pieces of functionality within a given module in the software

programming.

• It is described as low cohesion or high cohesion.

Types of Cohesion: There are many different types of cohesion in the software

engineering. Some of them are worst, while some of them are best. We have defined

them below:

http://careersplay.com/wp-content/uploads/2016/07/Types-of-Cohesion.jpg

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 16

1. Functional Cohesion: It is best type of cohesion, in which parts of the module

are grouped because they all contribute to the module’s single well defined task.

2. Sequential Cohesion: When the parts of modules grouped due to the output

from the one part is the input to the other, and then it is known as sequential

cohesion.

3. Communication Cohesion: In Communication Cohesion, parts of the module

are grouped because they operate on the same data. For e.g. a module

operating on same information records.

4. Procedural Cohesion: In Procedural Cohesion, the parts of the module are

grouped because a certain sequence of execution is followed by them.

5. Logical Cohesion: When the module’s parts are grouped because they are

categorized logically to do the same work, even though they are all have

different nature, it is known as Logical Cohesion. It is one of the worst type of

the cohesion in the software engineering.

 Software Engineering
Unit – IV

ST Joseph’s Degree & PG College 17

Difference between coupling and cohesion

Cohesion Coupling

Cohesion is the indication of the relationship

within module.

Coupling is the indication of the relationships

between modules.

Cohesion shows the module’s

relative functional strength.

Coupling shows the

relative independence among the modules.

Cohesion is a degree (quality) to which a

component / module focuses on the single thing.

Coupling is a degree to which a component /

module is connected to the other modules.

While designing you should strive for high

cohesion i.e. a cohesive component/ module

focus on a single task (i.e., single-mindedness)

with little interaction with other modules of the

system.

While designing you should strive for low

coupling i.e. dependency between modules

should be less.

Cohesion is the kind of natural extension of data

hiding for example, class having all members

visible with a package having default visibility.

Making private fields, private methods and non

public classes provides loose coupling.

Cohesion is Intra – Module Concept. Coupling is Inter -Module Concept.

Software Engineering Unit - V

1

Software Testing

Testing is the process of exercising a program with the specific intent of finding errors

prior to delivery to the end user.

 OR

Software testing is a process, to evaluate the functionality of a software application

with an intent to find whether the developed software met the specified requirements

or not and to identify the defects to ensure that the product is defect free in order to

produce the quality product

➢ To perform effective testing, you should conduct effective technical reviews. By

doing this, many errors will be eliminated before testing commences.

➢ Testing begins at the component level and works "outward" toward the

integration of the entire computer-based system.

➢ Different testing techniques are appropriate for different software engineering

approaches and at different points in time.

➢ Testing is conducted by the developer of the software and (for large projects)

an independent test group.

➢ Testing and debugging are different activities, but debugging must be

accommodated in any testing strategy.

➢ Verification refers to the set of tasks that ensure that software correctly

implements a specific function.

➢ Validation refers to a different set of tasks that ensure that the software that

has been built is traceable to customer requirements. Boehm [Boe81] states

this another way:

➢ Verification: "Are we building the product right?"

➢ Validation: "Are we building the right product?"

Objectives of testing

➢ Executing a program with the intent of finding an error.

Software Engineering Unit - V

2

➢ To check if the system meets the requirements and be executed successfully in

the Intended environment.

➢ To check if the system is “Fit for purpose”.

➢ To check if the system does what it is expected to do.

➢ A good test case is one that has a probability of finding an as yet undiscovered

error.

➢ A successful test is one that uncovers a yet undiscovered error.

➢ A good test is not redundant.

➢ A good test should be “best of breed”.

➢ A good test should neither be too simple nor too complex

Testing Principles:

If you were to test the entire possible combinations project EXECUTION TIME &

COSTS would rise exponentially. We need certain principles and strategies to

optimize the testing effort. Here are the 7 Principles:

1) Exhaustive testing is not possible

➢ Testing all the functionalities using all valid and invalid inputs and preconditions

is known as Exhaustive testing.

➢ Why it’s impossible to achieve Exhaustive Testing?

➢ Assume we have to test an input field which accepts age between 18 to 20 so we

do test the field using 18,19,20. In case the same input field accepts the range

between 18 to 100 then we have to test using inputs such as 18, 19, 20, 21, …., 99,

100. It’s a basic example, you may think that you could achieve it using

automation tool. Imagine the same field accepts some billion values. It’s

impossible to test all possible values due to release time constraints.

➢ If we keep on testing all possibletest conditions then the software execution time

and costs will rise. So instead of doing exhaustive testing, risks and priorities will

be taken into consideration whilst doing testing and estimating testing efforts.

Software Engineering Unit - V

3

2) Defect Clustering

➢ Defect clustering which states that a small number of modules contain most of the

defects detected. As per the Pareto Principle (80-20 Rule), 80% of issues comes

from 20% of modules and remaining 20% of issues from remaining 80% of modules.

So we do emphasize testing on the 20% of modules where we face 80% of bugs.

➢ By experience, you can identify such risky modules. But this approach has its own

problems

➢ If the same tests are repeated over and over again, eventually the same test cases

will no longer find new bugs.

3) Pesticide Paradox

➢ Repetitive use of the same pesticide mix to eradicate insects during farming

will over time lead to the insects developing resistance to the pesticide Thereby

ineffective of pesticides on insects.

➢ Pesticide Paradox in software testing is the process of repeating the same test

cases again and again, eventually, the same test cases will no longer find new

bugs.

➢ To overcome this, the test cases need to be regularly reviewed & revised,

adding new & different test cases to help find more defects.

4) Testing shows a presence of defects

➢ Testing talks about the presence of defects and don’t talk about the absence of

defects. I.e. Software Testing reduces the probability of undiscovered defects

remaining in the software but even if no defects are found, it is not a proof of

correctness.

➢ Testing shows the presence of defects in the software. The goal of testing is to

make the software fail. Sufficient testing reduces the presence of defects. In

case testers are unable to find defects after repeated regression testing doesn’t

mean that the software is bug-free.

https://en.wikipedia.org/wiki/Pareto_principle#In_software

Software Engineering Unit - V

4

➢ But what if, you work extra hard, taking all precautions & make your software

product 99% bug-free. And the software does not meet the needs &

requirements of the clients.

➢ This leads us to our next principle, which states that- Absence of Error

5) Absence of Error - fallacy

➢ It is possible that software which is 99% bug-free is still unusable. This can be

the case if the system is tested thoroughly for the wrong requirement.

➢ Software testing is not mere finding defects, but also to check that software

addresses the business needs. The absence of Error is a Fallacy i.e. Finding

and fixing defects does not help if the system build is unusable and does not

fulfill the user's needs & requirements.

➢ To solve this problem, the next principle of testing states that Early Testing

6) Early Testing

➢ Defects detected in early phases of SDLC are less expensive to fix. So

conducting early testing reduces the cost of fixing defects and defects in the

requirements or design phase are captured in early stages.

➢ It is much cheaper to fix a Defect in the early stages of testing. But how early

one should start testing?

➢ It is recommended that you start finding the bug the moment the requirements

are defined. More on this principle in a later training tutorial.

➢ Assume two scenarios, first one is you have identified an incorrect requirement

in the requirement gathering phase and the second one is you have identified

a bug in the fully developed functionality. It is cheaper to change the incorrect

requirement compared to fixing the fully developed functionality which is not

working as intended

7) Testing is context dependent

https://www.softwaretestingmaterial.com/sdlc-software-development-life-cycle/

Software Engineering Unit - V

5

➢ Testing is context dependent which basically means that the way you test an

e-commerce site will be different from the way you test a commercial off the

shelf application.

➢ All the developed software’s are not identical. You might use a different

approach, methodologies, techniques, and types of testing depending upon the

application type. For instance, testing, any POS system at a retail store will be

different than testing an ATM machine.

What is Software Testability?

• It is the state of software artifact, which decides the difficulty level for carrying

out testing activities on that artifact.

• These software artifacts may include software modules, UML models,

requirements & design documents and software application itself.

• It helps in determining the efforts that will be needed to execute test activities on

a particular software artifact based on its testability.

• Efforts may be considered in terms of inputs required in testing such as coverage

of testing scenarios, the number of test cases, time duration, test resources, etc.

• It is, basically the fundamental attribute associated with each and every software

artifact that enables to compute amount of effort required in performing testing.

Lesser the testability, larger will be the efforts whereas greater testability ensures

minimal efforts.

http://www.professionalqa.com/test-scenario
http://www.professionalqa.com/test-case

Software Engineering Unit - V

6

How to measure Software's Testability?

Below given are some of the heuristics through which software testability can be

determined

• Controllability: It defines the control over software and hardware behaviour

and comp. Testers should be able to control each module or layers of the

software, independently. The better our control, the more effective will be

testing.

Software Engineering Unit - V

7

• Observability: You can't test unless & until you perceive something. You can

only test, what is visible to you. It is related to observation of states and factors

affecting the output of the software.

• Availability: It defines the availability of the objects or entities, to carry out

the testing. This may include software product evolution at various stages of

development, bugs in the software, access to the source code, etc.

• Simplicity: The simplicity makes everything easier to use. Lesser efforts are

required in testing the simple software product. The simplicity of software may

depend upon its functional, structural and code simplicity.

• Stability: Lesser the changes better will be the testing. The software product

should be stable enough and does not require frequent modification in it. It

also examines that changes (if any needed), should be controlled and

communicated.

Key Benefits of Software Testability

• Provides ease to test engineers, to estimate the difficulty, in exploring the

defects in the software product.

• Decides the scope of automated testing on the software product, based on its

controllability.

• Increased in testability ensures the easy and early detection of bugs, thereby

saves both time and cost.

• Calculates, minimizes and control the efforts needed by the testers, to perform

testing.

Test Case

• A TEST CASE is a set of conditions or variables under which a tester will

determine whether a system under test satisfies requirements or works correctly.

• The process of developing test cases can also help find problems in the

requirements or design of an application.

http://www.professionalqa.com/automation-testing

Software Engineering Unit - V

8

• Test Case Template- A test case can have the following elements. Note, however,

that a test management tool is normally used by companies and the format is

determined by the tool used.

Test Suite ID The ID of the test suite to which this test case belongs.

Test Case ID The ID of the test case.

Test Case Summary The summary / objective of the test case.

Related Requirement The ID of the requirement this test case relates/traces to.

Prerequisites Any prerequisites or preconditions that must be fulfilled

prior to executing the test.

Test Procedure Step-by-step procedure to execute the test.

Test Data The test data, or links to the test data, that are to be used

while conducting the test.

Expected Result The expected result of the test.

Actual Result The actual result of the test; to be filled after executing

the test.

Status Pass or Fail. Other statuses can be ‘Not Executed’ if

testing is not performed and ‘Blocked’ if testing is blocked.

Remarks Any comments on the test case or test execution.

Created By The name of the author of the test case.

Date of Creation The date of creation of the test case.

Executed By The name of the person who executed the test.

Software Engineering Unit - V

9

Date of Execution The date of execution of the test.

Test Environment The environment (Hardware/Software/Network) in which

the test was executed.

Test Case Example / Test Case Sample

Test Suite ID TS001

Test Case ID TC001

Test Case

Summary

To verify that clicking the Generate Coin button generates coins.

Related

Requirement

RS001

Prerequisites 1. User is authorized.

2. Coin balance is available.

Test Procedure 1. Select the coin denomination in the Denomination field.

2. Enter the number of coins in the Quantity field.

3. Click Generate Coin.

Test Data 1. Denominations: 0.05, 0.10, 0.25, 0.50, 1, 2, 5

2. Quantities: 0, 1, 5, 10, 20

Expected Result 1. Coin of the specified denomination should be produced if the

specified Quantity is valid (1, 5)

2. A message ‘Please enter a valid quantity between 1 and 10’

should be displayed if the specified quantity is invalid.

Software Engineering Unit - V

10

Actual Result 1. If the specified quantity is valid, the result is as expected.

2. If the specified quantity is invalid, nothing happens; the

expected message is not displayed

Status Fail

Remarks This is a sample test case.

Created By John Doe

Date of Creation 01/14/2020

Executed By Jane Roe

Date of Execution 02/16/2020

Test Environment • OS: Windows Y

• Browser: Chrome N

Writing Good Test Cases

• As far as possible, write test cases in such a way that you test only one thing

at a time. Do not overlap or complicate test cases. Attempt to make your test

cases ‘atomic’.

• Ensure that all positive scenarios AND negative scenarios are covered.

• Language:

o Write in simple and easy-to-understand language.

o Use active voice instead of passive voice: Do this, do that.

o Use exact and consistent names (of forms, fields, etc).

• Characteristics of a good test case:

o Accurate: Exacts the purpose.

o Economical: No unnecessary steps or words.

Software Engineering Unit - V

11

o Traceable: Capable of being traced to requirements.

o Repeatable: Can be used to perform the test over and over.

o Reusable: Can be reused if necessary.

Test case design techniques

The main purpose of test case design techniques is to test the

functionalities and features of the software with the help of effective test

cases. The test case design techniques are broadly classified into three

major categories.

1. Specification-Based techniques

2. Structure-Based techniques

3. Experience-Based techniques

1. Specification-Based or Black-Box techniques

This technique leverages the external description of the software such as

technical specifications, design, and client’s requirements to design test

cases. The technique enables testers to develop test cases that provide full

test coverage. The Specification-based or black box test case design

techniques are divided further into 5 categories. These categories are as

follows:

• Boundary Value Analysis (BVA)

• Equivalence Partitioning (EP)

• Decision Table Testing

• State Transition Diagrams

• Use Case Testing

2. Structure-Based or White-Box techniques

The structure-based or white-box technique design test cases based on the

internal structure of the software. This technique exhaustively tests the

developed code. Developers who have complete information of the software

https://reqtest.com/testing-blog/test-design-techniques-explained-1-black-box-vs-white-box-testing/
https://reqtest.com/testing-blog/what-boundary-value-analysis-equivalence-partitioning-are-all-about/
https://reqtest.com/testing-blog/what-is-boundary-value-analysis-and-equivalence-partitioning/

Software Engineering Unit - V

12

code, its internal structure, and design help to design the test cases. This

technique is further divided into five categories.

• Statement Testing & Coverage

• Decision Testing Coverage

• Condition Testing

• Multiple Condition Testing

• All Path Testing

3.Experience-Based techniques

These techniques are highly dependent on tester’s experience to understand

the most important areas of the software. The outcomes of these techniques

are based on the skills, knowledge, and expertise of the people involved.

The types of experience-based techniques are as follows:

Error Guessing

In this technique, the testers anticipate errors based on their experience,

availability of data and their knowledge of product failure. Error guessing

is dependent on the skills, intuition, and experience of the testers .

Exploratory Testing

This technique is used to test the application without any formal

documentation. There is minimum time available for testing and maximum

for test execution. In this, the test design and test execution are performed

concurrently.

The successful application of test case design techniques will render test

cases that ensure the success of software testing.

https://reqtest.com/testing-blog/3-simple-tricks-to-make-exploratory-testing-more-efficient/

Software Engineering Unit - V

13

Risk Management

Definition of Risk

• Risk is an expectation of loss, a potential problem that may or may not occur in

the future.

• It is generally caused due to lack of information, control or time.

• A possibility of suffering from loss in software development process is called a

software risk.

• Loss can be anything, increase in production cost, development of poor quality

software, not being able to complete the project on time.

• A risk is a potential problem – it might happen and it might not

• Conceptual definition of risk

– Risk concerns future happenings

– Risk involves change in mind, opinion, actions, places, etc. – Risk involves

choice and the uncertainty that choice entails

Two characteristics of risk

– Uncertainty – the risk may or may not happen, that is, there are no 100% risks

(those, instead, are called constraints)

– Loss – the risk becomes a reality and unwanted consequences or losses occur

A software risk can be of two types

(1) internal risks that are within the control of the project manager and

(2) external risks that are beyond the control of project manager

Risk Categorization – Approach #1

• Project risks

– They threaten the project plan

– If they become real, it is likely that the project schedule will slip and

that costs will increase

• Technical risks

– They threaten the quality and timeliness of the software to be produced

Software Engineering Unit - V

14

– If they become real, implementation may become difficult or impossible

• Business risks

– They threaten the viability of the software to be built

– If they become real, they jeopardize the project or the product

• Sub-categories of Business risks

– Market risk – building an excellent product or system that no one really

wants

– Strategic risk – building a product that no longer fits into the overall

business strategy for the company

– Sales risk – building a product that the sales force doesn't understand

how to sell

– Management risk – losing the support of senior management due to a

change in focus or a change in people

– Budget risk – losing budgetary or personnel commitment

Risk Categorization – Approach #2

• Known risks

– Those risks that can be uncovered after careful evaluation of the project

plan, the business and technical environment in which the project is

being developed, and other reliable information sources (e.g., unrealistic

delivery date)

• Predictable risks

– Those risks that are extrapolated from past project experience (e.g., past

turnover)

• Unpredictable risks

– Those risks that can and do occur, but are extremely difficult to identify

in advance

Risk Management

• Risk management is carried out to:

Software Engineering Unit - V

15

– Identify the risk

– Reduce the impact of risk

– Reduce the probability or likelihood of risk

– Risk monitoring

Steps for Risk Management

1) Identify possible risks; recognize what can go wrong

2) Analyze each risk to estimate the probability that it will occur and the impact

(i.e., damage) that it will do if it does occur

3) Rank the risks by probability and impact

 - Impact may be negligible, marginal, critical, and catastrophic

4) Develop a contingency plan to manage those risks having high probability

and high impact

Risk Identification

A method for recognizing risks is to create item checklist. In the risk identification

step, the team systematically enumerates as many project risks as possible to make

them explicit before they become problems. The checklist is used for risk

identification and focus is at the subset of known and predictable risk in the following

categories:

1-Product size

• risks associated with overall size of the software to be built

2-Business impact

• risks associated with constraints imposed by management or the marketplace

3-Customer characteristics

• risks associated with sophistication of the customer and the developer's ability to

communicate with the customer in a timely manner

4-Process definition

• risks associated with the degree to which the software process has been defined

and is followed

Software Engineering Unit - V

16

5-Development environment

• risks associated with availability and quality of the tools to be used to build the

project

6-Technology to be built

• risks associated with complexity of the system to be built and the "newness" of the

technology in the system

7-Staff size and experience

• risks associated with overall technical and project experience of the software

engineers who will do the work

Risk Components and Drivers

• The project manager identifies the risk drivers that affect the following risk

components

– Performance risk - the degree of uncertainty that the product will meet its

requirements and be fit for its intended use

– Cost risk - the degree of uncertainty that the project budget will be

maintained

– Support risk - the degree of uncertainty that the resultant software will be

easy to correct, adapt, and enhance

– Schedule risk - the degree of uncertainty that the project schedule will be

maintained and that the product will be delivered on time

• The impact of each risk driver on the risk component is divided into one of four

impact levels

– Negligible, marginal, critical, and catastrophic

• Risk drivers can be assessed as impossible, improbable, probable, and frequent

Risk Projection (Estimation)

• Risk projection (or estimation) attempts to rate each risk in two ways

– The probability that the risk is real

Software Engineering Unit - V

17

– The consequence of the problems associated with the risk, should it occur

• The project planner, managers, and technical staff perform four risk projection

steps (see next slide)

• The intent of these steps is to consider risks in a manner that leads to

prioritization

• By prioritizing risks, the software team can allocate limited resources where

they will have the most impact

Risk Projection/Estimation Steps

1) Establish a scale that reflects the perceived likelihood of a risk (e.g., 1-low,

10-high)

2) Delineate the consequences of the risk

3) Estimate the impact of the risk on the project and product

4) Note the overall accuracy of the risk projection so that there will be no

misunderstandings

Risk table: A risk table provides a project manager with a simple technique for risk

projection. It consists of five columns

1. Risk Summary – short description of the risk

2. Risk Category – one of seven risk categories (slide 12)

3. Probability – estimation of risk occurrence based on group input

4. Impact – (1) catastrophic (2) critical (3) marginal (4) negligible

5. RMMM – Pointer to a paragraph in the Risk Mitigation, Monitoring, and

Management Plan

Risk Summary Risk Category Probability Impact (1-4) RMMM

Developing a Risk Table

Software Engineering Unit - V

18

• List all risks in the first column (by way of the help of the risk item

checklists)

• Mark the category of each risk

• Estimate the probability of each risk occurring

• Assess the impact of each risk based on an averaging of the four risk

components to determine an overall impact value

• Sort the rows by probability and impact in descending order

• Draw a horizontal cutoff line in the table that indicates the risks that will be

given further attention

Assessing Risk Impact

• Three factors affect the consequences that are likely if a risk does occur

– Its nature – This indicates the problems that are likely if the risk

occurs

– Its scope – This combines the severity of the risk (how serious was it)

with its overall distribution (how much was affected)

– Its timing – This considers when and for how long the impact will be

felt

• The overall risk exposure formula is RE = P x C

– P = the probability of occurrence for a risk

– C = the cost to the project should the risk actually occur

• Example

– P = 80% probability that 18 of 60 software components will have to be

developed

– C = Total cost of developing 18 components is $25,000

– RE = .80 x $25,000 = $20,000

Risk Mitigation, Monitoring, and Management(RMMM)

R The RMMM plan may be a part of the software development plan or may be a

separate document. Once RMMM has been documented and the project has begun,

the risk mitigation, and monitoring steps begin

Software Engineering Unit - V

19

– Risk mitigation is a problem avoidance activity

– Risk monitoring is a project tracking activity

Risk analysis support the project team in constructing a strategy to deal with risks.

There are three important issues considered in developing an effective strategy:

▪ Risk avoidance or mitigation - It is the primary strategy which is fulfilled

through a plan. It is also called as risk control.

▪ Risk monitoring - The project manager monitors the factors and gives an

indication whether the risk is becoming more or less.

▪ Risk management and planning - It assumes that the mitigation effort failed

and the risk is a reality.

Risk Management: Fundamental Steps

Risk mitigation (avoidance) is the primary strategy and is achieved through a plan.

Example: Risk of high staff turnover

Risk mitigation handling options include:

Software Engineering Unit - V

20

• Assume/Accept: Acknowledge the existence of a particular risk, and make a

deliberate decision to accept it without engaging in special efforts to control

it. Approval of project or program leaders is required.

• Avoid: Adjust program requirements or constraints to eliminate or reduce the

risk. This adjustment could be accommodated by a change in funding,

schedule, or technical requirements.

• Control: Implement actions to minimize the impact or likelihood of the risk.

• Transfer: Reassign organizational accountability, responsibility, and

authority to another stakeholder willing to accept the risk.

• Watch/Monitor: Monitor the environment for changes that affect the nature

and/or the impact of the risk.

Risk Monitoring

• During risk monitoring, the project manager monitors factors that may provide

an indication of whether a risk is becoming more or less likely

• Risk monitoring has three objectives

• To assess whether predicted risks do, in fact, occur

• To ensure that risk aversion steps defined for the risk are being properly

applied

• To collect information that can be used for future risk analysis

• The findings from risk monitoring may allow the project manager to ascertain

what risks caused which problems throughout the project

Risk management and contingency planning assume that mitigation efforts have

failed and that the risk has become a reality

• RMMM steps incur additional project cost

– Large projects may have identified 30 – 40 risks

• Risk is not limited to the software project itself

– Risks can occur after the software has been delivered to the user

Software Engineering Unit - V

21

Seven Principles of Risk Management:

