
Unit	–	I
Hypertext	Markup	Language	(HTML)

	

Basics:
	
What	Is	the	Internet?
	

The	 Internet	 is	 a	worldwide	 collection	of	 networks	 that	 links	millions	 of
businesses,	government	offices,	educational	institutions,	and	individuals.
The	Internet,	as	it	is	known	today,	was	born	in	1983	when	ARPANET	was
split	into	two	interconnected	networks:	ARPANET	and	MILNET.	Data
is	 transferred	over	 the	 Internet	using	servers	which	are	computers	 that
manage	 network	 resources	 and	 provide	 centralized	 storage	 areas,
and	clients,	 which	 are	 computers	 that	 can	 access	 the	 contents	 of	 the
storage	areas.

Each	computer	or	device	on	a	communications	line	has	a	numeric
address	 called	 an	 IP	 (Internet	 protocol)	 address,	 the	 text	 version	 of
which	is	called	a	domain	name.	Every	time	you	specify	a	domain	name,
a	DNS	(domain	name	system)	server	translates	the	domain	name	into
its	associated	IP	address,	so	data	can	route	to	the	correct	computer.
Internet	services	are:
•	Electronic	mail	(email
•	Newsgroups
•	Internet	Relay	Chat	(IRC
•	RIA,	WOA	and	Social	Web

•	File	Transfer	Protocol	(FTP	and	FTPS,	SFTP
•	World	Wide	Web	(www)
	

World	Wide	Web	(WWW):
The	World	Wide	Web	is	a	set	of	programs,	standards	and	protocols	that
allow	 the	 text,	 images,	 animations,	 sounds	 and	 videos	 to	 be	 stored,

accessed	and	linked	together	in	form	of	web	sites.	The	World	Wide	Web
is	a	way	of	exchanging	 information	between	computers	on	 the	 Internet,
tying	 them	 together	 into	 a	 vast	 collection	 of	 interactive	 multimedia
resources.	It	has	a	unique	combination	of	flexibility,	portability	and	user-
friendly	 features	 that	 distinguish	 it	 from	 other	 services	 provided	 by	 the
Internet.	The	main	reason	for	its	popularity	is	the	use	of	a	concept	called
hypertext.	It	uses	the	client-server	model,	and	an	Internet	protocol	called
hypertext	 transport	 protocol	 (HTTP)	 for	 interaction	 between	 the
computers	on	the	Internet.	An	English	scientist	Tim	Berners-Lee	invented
the	World	Wide	Web	in	1989	at	CERN	in	Geneva.
	
	

URL
URL	 stands	 for	 Uniform	 Resource	 Locator,	 and	 is	 used	 to	 specify
addresses	on	the	World	Wide	Web.	A	URL	 is	 the	fundamental	network
identification	 for	 any	 resource	 connected	 to	 the	 web	 (e.g.,	 hypertext
pages,	 images,	 and	 sound	 files).	 It	 is	 a	 reference	 (an	 address)	 to	 a
resource	on	the	Internet.

A	URL	will	have	the	following	format	−

protocol://domain	name:port/path

A	URL	has	two	main	components:

Protocol	 Identifier:	 The	 protocol	 specifies	 how	 information	 is
transferred	 from	 a	 link.	 The	 protocol	 used	 for	 web	 resources	 is
Hyper	Text	Transfer	Protocol	(HTTP).
Domain	name:	The	protocol	 is	followed	by	a	colon,	two	slashes,
and	then	the	resource	name-domain	name.	The	domain	name	is
the	 complete	address	 to	 the	 resource.	 The	domain	name	 is	 the
computer	on	which	the	resource	is	located.

Ex:	 	 http://google.com		-	here	 the	 protocol	 identifier	 is	 http,	 the
domain	name	is	google.com

Internet	Protocols:	The	 different	 protocols	 like	HTTP,	 TCP/IP,	 FTP,
Telnet	etc.	are	as	follows

http://google.com

•	HTTP-	Hyper	Text	Transfer	Protocol:	HTTP	is	for	accessing	and
transmitting	World	Wide	Web	documents.	HTTP	takes	care	of	the
communication	between	a	web	server	and	a	web	browser.

•	TCP	 –	 Transmission	 Control	 Protocol:	 TCP	 is	 a	 connection
oriented	protocol	and	offers	end-to-end	packet	delivery.	It	acts	as
back	 bone	 for	 connection.	 It	 handles	 communication	 between
applications

•	IP	 –	 Internet	 Protocol:	 Internet	 Protocol
is	 connectionless	 and	 unreliable	 protocol.	 IP	 handles
communication	 between	 computers.	 IP	 takes	 care	 of	 the
communication	with	other	computers.

•	FTP	 (File	 Transfer	Protocol):	 FTP	 creates	 two	 processes	 such
as	Control	Process	and	Data	Transfer	Process	at	both	ends	i.e.	at
client	 as	 well	 as	 at	 server.	 FTP	 establishes	 two	 different
connections:	 one	 is	 for	 data	 transfer	 and	 other	 is	 for	 control
information.

	

Web	 Browser:	 When	 two	 computers	 communicate	 over	 some
network,	 in	many	cases	one	 acts	as	a	 client	and	 the	other	as	a	 server.
The	 client	 initiates	 the	 communication,	 which	 is	 often	 a	 request	 for
information	 stored	 on	 the	 server,	 which	 then	 sends	 that	 information
back	 to	 the	client.	The	Web,	as	well	 as	many	 other	systems,	operates
in	this	client-server	configuration.	Here	the	client	can	make	use	of	web
browser	application	to	communicate.
Web	browser	is	an	application	that	provides	a	way	to	look	at	and	interact
with	 the	 information	on	 the	World	Wide	Web.	 It	 retrieves,	presents,	and
traverses	 information	 resources.	 These	 include	 web	 pages,	 images,
video,	and	other	multimedia	content.
Ex:	Internet	explorer,	Mozilla	Firefox,	Opera,	google	chrome.
	

Web	Server:
A	 web	 server	 is	 a	 computer	 system	 that	 processes	 requests
via	 HTTP	 to	 serve	 the	 files	 that	 form	 web	 pages	 to	 users,	 in
response	to	their	requests.

The	 term	 can	 refer	 to	 the	 entire	 system,	 or	 specifically	 to
the	software	that	accepts	and	supervises	the	HTTP	requests.

The	 primary	 function	 of	 a	 web	 server	 is	 to	 store,	 process	 and
deliver	web	pages	to	clients.

When	client	sends	request	for	a	web	page,	the	web	server	search
for	the	requested	page	if	requested	page	is	found	then	it	will	send
it	to	client	with	an	HTTP	response.	If	 the	requested	web	page	is
not	found,	web	server	will	the	send	an	HTTP	response:	Error	404
Not	found.

The	most	 commonly	used	 Web	 servers	 are	 Apache,	 which	 has
been	 implemented	 for	 a	 variety	 of	 computer	 platforms,	 and
Microsoft’s	 Internet	 Information	 Server		(IIS),	 which	 runs	 under
Windows	operating	systems	and	XAMPP

Internet	Service	Providers
An	 Internet	 Service	 Provider	 (ISP)	 is	 a	 company	 provides	 internet
access	 to	 individuals	 and	 businesses	 companies,	 families,	 and	 even
mobile	 users	 for	 monthly	 or	 yearly	 fees.	 The	 type	 of	 Internet	 access
varies	depending	on	what	 the	customer	requires.	 In	addition	 to	 internet
connection,	ISPs	may	also	provide	related	services	like	web	site	hosting
and	development,	email	hosting,	domain	name	registration	etc.	ISPs	use
fiber-optics,	 satellite,	 copper	 wire,	 and	 other	 forms	 to	 provide	 Internet
access	 to	 its	 customers.	 Factors	 to	 consider	 while	 choosing	 ISP:
Bandwidth	 (speed),	 Cost	 (setup	 and	 service	 fee),	 Availability	 (reach),
Reliability	(down	time),	Convenience	(mobility)	etc.
Examples	 of	 ISP’s	 are	 AT&T,	 Verizon,	 Infocom,	 Telecom,	 UTL,	 MTN,
Airtel,	VSNL	etc.

Types	of	internet	access

https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Web_page
https://en.wikipedia.org/wiki/Client_(computing)

Most	ISPs	offer	several	types	of	internet	access	which	essentially	differ	in
connection	speed	–	the	time	taken	for	download	and	upload.	There	exist
several	 ways	 to	 connect	 to	 the	 internet.	 Following	 are	 the	 connection
types	available:

1.	 Dial-up	 Connection-	 connection	 is	 probably	 the	 slowest
connection	and	requires	you	to	connect	to	the	internet	via	your
phone	line	by	dialing	a	number	specified	by	the	ISP.	It	requires
a	modem	to	setup	dial-up	connection,

2.	 ISDN	 -	 ISDN	 is	 acronym	 of	 Integrated	 Services	 Digital
Network.	 It	establishes	 the	connection	using	 the	phone	 lines
which	carry	digital	signals	instead	of	analog	signals.

3.	 DSL	 -	 is	acronym	of	Digital	Subscriber	Line.	 It	 is	a	 form	of
broadband	connection	as	it	provides	connection	over	ordinary
telephone	lines.	It	is	indeed	very	fast	and	these	ISPs	can	offer
different	download	speeds	–	quicker	the	speed,	higher	will	be
the	price.

4.	 Cable	 TV	 Internet	 connections	 –	 this	connection	 is	 provided	 through
Cable	TV	lines.	A	cable	modem	is	used	to	access	this	service,
provided	by	the	cable	operator

5.	 Satellite	 Internet	connections	 -	Satellite	 Internet	connection
offers	high	speed	connection	to	the	internet.	We	need	a	dialup
access	through	ISP	over	telephone	line.

6.	Wireless	Internet	Connections-	Wireless	Internet	Connection
makes	use	of	radio	frequency	bands	to	connect	to	the	internet
and	offers	a	very	high	speed.	The	wireless	internet	connection
can	be	obtained	by	either	Wi-Fi	or	Bluetooth.

	

	

URL
URL	 stands	 for	 Uniform	 Resource	 Locator,	 and	 is	 used	 to	 specify
addresses	on	the	World	Wide	Web.	A	URL	 is	 the	fundamental	network
identification	 for	 any	 resource	 connected	 to	 the	 web	 (e.g.,	 hypertext
pages,	 images,	 and	 sound	 files).	 It	 is	 a	 reference	 (an	 address)	 to	 a
resource	on	the	Internet.

A	URL	will	have	the	following	format	−

protocol://domain	name:port/path

A	URL	has	two	main	components:

Protocol	 Identifier:	 The	 protocol	 specifies	 how	 information	 is
transferred	 from	 a	 link.	 The	 protocol	 used	 for	 web	 resources	 is
Hyper	Text	Transfer	Protocol	(HTTP).	Other	protocols	compatible
with	 most	 web	 browsers	 include	 FTP,	 telnet,	 newsgroups,	 and
Gopher.
Domain	name:	The	protocol	 is	followed	by	a	colon,	two	slashes,
and	then	the	resource	name-domain	name.	The	domain	name	is
the	 complete	address	 to	 the	 resource.	 The	domain	name	 is	 the
computer	 on	 which	 the	 resource	 is	 located.	 Links	 to	 particular
files	or	 subdirectories	may	be	 further	 specified	after	 the	domain
name.	 The	 directory	 names	 are	 separated	 by	 single	 forward
slashes.

Ex:		http://google.com		-	here	the	protocol	identifier	is	http,	the	domain
name	is	google.com

Domain	Name:

http://google.com

To	identify	a	computer	resource	on	internet,	each	computer	is	assigned
with	an	IP	address.	It	is	a	series	of	numbers	that	identify	a	particular
computer	on	the	internet.	A	typical	IP	address	looks	like	this:	66.249.66.1.
Now	an	IP	address	like	this	is	quite	difficult	to	remember.	Domain	names
were	invented	to	solve	this	problem.
	

A	 domain	 name	 is	 a	 unique	 name	 that	 identifies	 a	 website.	 A	 domain
name	is	the	part	of	your	Internet	address	of	the	website	that	comes	after
"www".	These	names	begin	with	-

The	 name	 of	 the	 host	 machine,	 followed	 by	 progressively
larger	enclosing	collections		of	machines,	called	domains.
There	may	be	 two	or	more	domain	names.
The	 first	 domain	 name	 which	 appears	 immediately	 to	 the
right	of	 the	 host	 name	 is	 the	 domain	 of	which	 the	 host	 is	a
part.
All	domain	names	have	a	domain	suffix,	such	as	.com,	.net,	or
.org.	The	domain	suffix	helps	 identify	 the	 type	of	website	 the
domain	name	represents.	For	example,

.com	−	Stands	 for	company/commercial,	but	 it	can	be	used	 for
any	website.

.net	−	Stands	 for	network	and	 is	usually	used	 for	a	network	of
sites.

.org	 −	Stands	 for	 organization	 and	 is	 supposed	 to	 be	 for	 non-
profit	bodies.

.us,	.in	−	they	are	based	on	your	country	names	so	that	you	can
go	for	country	specific	domain	extensions

.info	−	Stands	for	information.	This	domain	name	extension	can
be	very	useful,	and	as	a	new	comer	it's	doing	well.

.edu/ac	-	educational/academic

.mil	–	military	sites

https://techterms.com/definition/website
https://techterms.com/definition/domain_suffix

.int	–	international	organizations

.net	–	network	providers

Ex:												https://techterms.com/						here	techterms.com	is	a	domain
name.

	

What	is	HTML?
HTML	stands	for	Hyper	Text	Markup	Language,	which	is	the
most	widely	used	language	on	Web	to	develop	web	pages.
HTML	 was	 created	 by	 Tim	 Berners-Lee	 in	 late	 1991	 but
"HTML	 2.0"	 was	 the	 first	 standard	 HTML	 specification	 which
was	published	in	1995.
HTML	4.01	was	a	major	version	of	HTML	and	it	was	published
in	 late	 1999.	 Though	 HTML	 4.01	 version	 is	 widely	 used	 but
currently	we	are	having	HTML-5	version	which	is	an	extension
to	HTML	4.01,	and	this	version	was	published	in	2012.
It	is	a	markup	language	and	is	a	set	of	markup	tags.	The	tags
describe	document	content.
HTML	documents	contain	HTML	tags	and	plain	text,	HTML
documents	are	also	called	web	pages

	

HTML	Tags

HTML	markup	tags	are	usually	called	HTML	tags.
HTML	tags	are	keywords	(tag	names)	surrounded	by	angle
brackets	like	<html>
HTML	tags	normally	come	in	pairs	like	<html>	and	</html>.
The	first	tag	in	a	pair	is	the	start	tag,	the	second	tag	is	the	end
tag.	The	end	tag	is	written	like	the	start	tag,	with	a	slash	before
the	tag	name.
Start	and	end	tags	are	also	called	opening	tags	and	closing
tags.
In	HTML,	tags	are	paired	tags	and	unpaired	tags.	Paired	tags
have	opening	tag	and	ending	tag.	Unpaired	tags	doesn’t	have
end	tag.
HTML	tags	are	not	case	sensitive,		means	the	same	as	.
In	HTML	there	are	both	logical	tags	and	physical	tags.	Logical	tags	are	designed	to
describe	(to	the	browser)	the	enclosed	text's	meaning.	Physical	tags	on	the	other
hand	provide	specific	instructions	on	how	to	display	the	text	they	enclose.

	

HTML	Page	Structure:		The	following	is	the	basic	structure	of	HTML
document.

An	HTML	document	has	two	main	parts:
1.	head:	the	head	element	contains	title	of	the	web	page	-	meta	data	of	a
web	document.
2.	 body:	 The	 body	 element	 contains	 the	 information	 that	 you	 want	 to
display	on	a	web	page.
	

In	a	web	page,	the	first	tag	<html>	indicates	the	markup	language	that	is
being	used	for	the	document.	The	<head>	tag	contains	information	about
the	 web	 page.	 Lastly,	 the	 content	 appears	 in	 the	 <body>	 tag.	 The
following	illustration	provides	a	summary.
	

Steps	to	create	your	first	web	page	with	Notepad?

Step	1:	Open	Notepad
To	open	Notepad	in	Windows	7	or	earlier:	Click	Start	(bottom	left	on	your
screen).	Click	All	Programs.	Click	Accessories.	Click	Notepad.

To	open	Notepad	in	Windows	8	or	later:	Open	the	Start	Screen	(the

http://www.scriptingmaster.com/html/HTML-meta-tags.asp

window	symbol	at	the	bottom	left	on	your	screen).	Type	Notepad

Step	2:	Write	Some	HTML	code
<!	DOCTYPE	html>
<html>
<body>
<h1>My	First	Heading</h1>
<p>My	first	paragraph.</p>
</body>
</html>

Step	3:	Save	the	HTML	Page
Save	the	file	on	your	computer.
Select	File	Save	as	in	the	Notepad	menu.
When	saving	an	HTML	file,	use	either	the	.htm	or	the	.html	file	extension.

Step	4:	Execute	HTML	file	/	View	HTML	Page	in	Your	Browser
Double-click	your	saved	HTML	file	or	right	click	on	html	file	and	open	with
any	web	browser.

Tag	Attributes:
Tags	 can	 have	 attributes.	 Attributes	 can	 provide	 additional	 information
about	 the	HTML	elements	on	your	page.	The	<tag>	tells	 the	browser	to
do	 something,	 while	 the	 attribute	 tells	 the	 browser	 how	 to	 do	 it.	 For
instance,	if	we	add	the	bgcolor	attribute,	we	can	tell	the	browser	that	the
background	 color	 of	 your	 page	 should	 be	 blue,	 like	 this:	 <body
bgcolor="blue">.	Attributes	always	come	 in	name/value	pairs	 like	 this:
name="value".	Attributes	are	always	added	 to	 the	start	 tag	of	an	HTML
element	and	the	value	is	surrounded	by	quotes.
	
Comments	in	HTML	:	The	comment	tag	is	used	to	insert	a	comment	in	
the	HTML	source	code.	A	comment	can	be	placed	anywhere	in	the	
document	and	the	browser	will	ignore	everything	inside	the	brackets.	You	
can	use	comments	to	write	notes	to	yourself,	or	write	a	helpful	message	
to	someone	looking	at	your	source	code.	A	comment	can	be	inserted	with	
the	following	tag:						<!—	-	-	comment	-->.
You	don't	see	the	text	between	the	tags	<!--	and	-->
Ex:	 <p>	 This	 html	 comment	 would	 <!--	 This	 is	 a	 comment	 -->	 be
displayed	like	this.</p>

o/p:	This	HTML	comment	would	be	displayed	like	this.
	

Text	Formatting	Tags:
	
The	following	HTML	tags	are	used	to	format	the	appearance	of	the	text
on	web	page.
	
Heading	tags	-	<h1>				</h1	>:	Headings	are	defined	with	the	<h1>	to
<h6>	tags.	<h1>	defines	the	largest	heading	while	<h6>	defines	the
smallest.

Ex:	<h1>	This	is	my	first	Web	Page	</h1>
						<h6>	This	is	my	first	web	page	</h6>						

	
HTML	automatically	adds	an	extra	blank	line	before	and	after	a	heading.
A	useful	heading	attribute	is	having	“align”	attribute	with	3	values	as
“left”,	“right”,	“center”.
Ex:	<h5	align="left">I	can	align	headings	</h5>
<h5	align="center">This	is	a	centered	heading	</h5>
<h5	align="right">This	is	a	heading	aligned	to	the	right	</h5>
	
Paragraph	tag	<p>		</p>:	Paragraphs	are	defined	with	the	<p>	and	</p>
tag.	Think	of	 a	paragraph	as	a	block	of	 text.	Most	 content	 on	a	 simple
web	page	will	appear	in	paragraphs	or	sections.	A	lot	of	text	can	appear
within	 the	<p>	and	</p>	 tags,	and	browsers	will	 automatically	wrap	 the
text	onto	 the	next	 line	once	 it	 reaches	 the	edge	of	 the	screen.	You	 can
use	the	align	attribute	with	a	paragraph	tag	as	well.
Ex:							<p	align="left">This	is	a	paragraph</p>
	
Bold	-					:	The	text	in	between	the	tags	will	be	bold,	and	stand
out	against	text	around	it,	the	same	as	in	a	word	processor.

	
Italic	-	<i>				</i>:	italics	displays	the	text	at	a	slight	angle.

	
Underline	-	<u>				</u>:		Underlines	the	text

	
Strike/del	:		<strike>				</strike>:	The	HTML	presentational	inline	element	for
strikethrough	is	<strike>	or	<s>.	This	element	was,	however,	deprecated,	and	replaced	by	the
	tag.	Also	works	by	using	<s>	</s>	instead.
Ex:	<p>The	HTML	strike	tag	is	like	this.	<strike>strike</strike>	through

the	middle	of	the	text.
o/p:		The	HTML	strike	tag	is	like	this.	strike	through	the	middle	of	the
text	.
	
Line	Break	Tag	-	</br>	:	Whenever	you	use	the	
	element,	anything	following	it	starts
from	the	next	line.	This	tag	is	an	example	of	an	empty	element,	where	you	do	not	need	closing
tag,	as	there	is	nothing	to	go	in	between	them.

Ex:	<p>This	
	is	a	para
	graph	with	line	breaks</p>
o/p:							This

is	a	para
graph	with	line	breaks

	
Horizontal	tag	-	<hr>:	Horizontal	lines	are	used	to	visually	break-up
sections	of	a	document.	The	<hr>	tag	creates	a	line	from	the	current
position	in	the	document	to	the	right	margin	and	breaks	the	line
accordingly.	The	horizontal	rule	does	not	have	a	closing	tag.	It	takes
attributes	such	as	align	and	width.	For	instance:
Ex:	<hr	width="50%"	align="center">
	
Preformatted	Text	-	<pre>			</pre>:	Any	text	between	the	pre	tags,
including	spaces,	carriage	returns	and	punctuation,	will	appear	in	the
browser	as	it	is	typed	in	the	text	editor	(normally	browsers	ignore	multiple
spaces)

	
Source	Code	-	<code>		</code>:	The	text	is	displayed	in	a	fixed-width
font,	and	is	commonly	used	to	show	source	code.

	
Small	-	<small>	</small>:	Instead	of	having	to	set	a	font	size,	you	can
use	the	small	tag	to	render	text	slightly	smaller	than	the	text	around	it.
Big	-	<big>		</big>	:	It	displays	the	text	in	slightly	bigger	size	than	the
text	around	it.

	
Centre	-	<center>	</center>:	It	makes	everything	in	between	the	tags
centered	(in	the	middle	of	the	page).

	
Emphasis	-		:	Used	to	emphasize	text,	which	usually
appears	in	italics,	but	can	vary	according	to	your	browser.
	
Strong	Emphasis	-		:	Used	to	emphasize	text	more,
which	usually	appears	in	bold,	but	can	vary	according	to	your	browser.

	
Superscript	Text	-	The	:	The	content	of	a	<sup>	element
is	written	in	superscript;	the	font	size	used	is	the	same	size	as	the
characters	surrounding	it	but	is	displayed	half	a	character’s	height	above
the	other	characters.
Ex:	<p>The	following	word	uses	a	^{superscript}	typeface.</p>
o/p:	The	following	word	uses	a	superscript	typeface.
	
Subscript	Text	-	The	<sub>	Element:	The	content	of	a	<sub>	element
is	written	in	subscript;	the	font	size	used	is	the	same	as	the	characters
surrounding	it,	but	is	displayed	half	a	character’s	height	beneath	the
other	characters.
Ex:	<p>The	following	word	uses	a	_{subscript}	typeface.</p>
o/p:	The	following	word	uses	a	subscript	typeface.
	
Font	tag:		:	the	font	tag	is	used	to	change	the	color,	size,
style	of	the	font	tag.
	

Font	Color	-			:Change	the	color	of	a	few
words	or	a	section	of	text.	The	color	of	font	can	be	expressed	in	2	ways
either	in	name	of	the	color	or	in	code	of	the	color.	In	color	code	the	code
can	be	expressed	in	6	digit	number	to	represent	the	hex	color	code.
Font	Size	-		:	Replace	the	?	with	a	number	from
1	to	7	to	change	the	size	of	the	font.	One	being	the	smallest	and	seven
the	largest.
Font	Size	Change	-			:	For	an	immediate
change	of	font	size	with	respect	to	the	font	size	preceding	it,	this	tag
increase	or	decreases	the	size	of	the	font	by	the	number	you	specify.
Eg:	Some	Text

	
Font	Face	-		:	To	show	text	in	a	particular	font,
use	the	font	name	such	"Helvetica"	or	"Arial"	or	"Courier".
Ex:		welcome
	
Deleted	Text:	Anything	that	appears	within	...	element,	is
displayed	as	deleted	text.

Ex:	<p>I	want	to	drink	cola	<ins>wine</ins></p>

Marked	Text:	Anything	that	appears	with-in	<mark>...</mark>	element,
is	displayed	as	marked	with	yellow	ink.

Ex:	<p>The	following	word	has	been	<mark>marked</mark>	with
yellow</p>

Text	Abbreviation:	You	can	abbreviate	a	text	by	putting	it	inside	opening
<abbr>	and	closing	</abbr>	tags.	If	present,	the	title	attribute	must
contain	this	full	description	and	nothing	else.
Ex:		<abbr	title="Hyper	Text	Transfer	Protocol”	>	HTTP</abbr>
	

Links	in	HTML
A	 webpage	 can	 contain	 various	 links	 that	 take	 you	 directly	 to
other	pages	or	other	websites,	and	even	specific	parts	of	a	given
page.	These	links	are	known	as	hyperlinks.
Hyperlinks	 allow	 visitors	 to	 navigate	 between	 Web	 sites	 by
clicking	 on	 words,	 phrases,	 and	 images.	 Thus	 you	 can	 create
hyperlinks	using	 text	 or	 images	available	 on	a	webpage	or	 any
other	HTML	element.
A	 link	 is	 specified	 using	 HTML	 <a>.	 This	 tag	 is	 called	 anchor
tag	and	anything	between	 the	opening	<a>	 tag	and	 the	closing
	tag	becomes	part	of	the	link	and	a	user	can	click	that	part	to
reach	to	the	linked	document.

	
	

In	HTML	links	may	be	1.	External	links	or	2.Internal	links.
External	 links	 point	 from	 one	 domain	 to	 an	 entirely	 separate
domain.	They	may	be	 links	from	your	website	to	another	website
to	provide	additional	information	for	readers,	or	they	may	be	links
from	your	website	to	an	affiliate	program.	This	link	can	be	absolute
path	or	relative	path.
Internal	 links	 only	 point	 within	 your	 own	 specific	 website	 or

domain.	 The	 menu	 bar	 at	 the	 top	 of	 your	 site	 includes	 internal
links.	 Links	 from	 pages	 on	 your	 site	 to	 your	 contact	 page	 are
another	simple	example	of	internal	links.	This	link	can	be	absolute
path	or	relative	path.

Syntax	of	anchor	tag	<a>	…
Syntax:		link	text	
Ex:								My	homepage	
There	are	two	main	parts	in	link:

1.	 The	href	is	an	attribute	that	specifies	the	destination	address
(URL)	where	to	go.	In	the	above	example	home.html	is
destination	address.

2.	 The	link	text	that	is	the	visible	text	in	between	<a>	and	.
Clicking	on	the	link	text	will	send	you	to	the	specified	address.
Link	text	generally	will	be	displayed	in	blue	color	with	underline.
In	the	above	example	MY	homepage	is	link	text.

Ex:	Google	Search
Target	attribute	of	hyperlink:	The	target	attribute	specifies	where	to
open	the	linked	document.
The	target	attribute	can	have	one	of	the	following	values:

_blank	-	Opens	the	linked	document	in	a	new	window	or	tab

_self	-	Opens	the	linked	document	in	the	same	window/tab	as	it
was	clicked	(this	is	default)

_parent	-	Opens	the	linked	document	in	the	parent	frame

_top	-	Opens	the	linked	document	in	the	full	body	of	the	window

framename	-	Opens	the	linked	document	in	a	named	frame
Ex1:	Google
Ex2:	Tutorial

	
	
Image	as	a	Link	-	

By	placing	an	 image	tag	between	the	<a>	and		 tags,	you	can
turn	an	 image	 into	a	 link,	and	clicking	on	that	 image	will	 then	 load

the	 referenced	 page.	 You	may	 notice	 that	 the	 image	 gets	 a	 blue
border	just	as	link	text	became	underlined.	This	can	be	resolved	by
setting	the	border="0"	attribute	of	the	image,	or	using	css.

	
Ex1:	
Ex2:	
	

	

Images	in	HTML:	Images	are	used	in	HTML	documents
i.	 Images	can	improve	the	design	and	the	appearance	of	a	web	page.
ii.	 Make	the	page	visually	effective	and	display	information.
iii.	 Images	can	also	be	used	as	links

	tag:	To	display	an	image	you	need	to	specify	the	URL	of	the
image	using	the	src	attribute,	replacing	url	with	the	filename	of	image.	it
contains	attributes	only,	and	does	not	have	a	closing	tag.There	are	several	ways	this	can	be
done:

src="picture.jpg"	-	the	filename	if	the	image	is	in	the	same	directory
as	the	html	file.
src="images/picture.jpg"	-	a	relative	path	when	the	image	is	in
another	directory.
src="http://www.simplehtmlguide.com/images/photo.jpg"	-	a	full	URL
can	also	be	used.
	

Alternate	Text	-	:	The	alt	attribute	defines	the	text
shown	in	place	of	an	image	when	the	image	cannot	load.

	
Image	Size	-	:	An	image	will	normally	be
shown	actual	size,	but	by	using	the	width	and	height	attributes	you	can
change	the	displayed	size.	You	can	specify	the	size	in	pixels	or	as	a
percentage.
Ex1:	
	
Border	-	

Add	a	border	by	specifying	the	thickness	in	pixels.	You	can	also	set
border="0"	 to	 remove	 the	border	added	when	 images	are	used	as
links.
	

Image	Alignment	-	
By	 default	 an	 image	 appears	 at	 the	 place	 specified	 in	 the	 html

http://www.simplehtmlguide.com/csscheatsheet.php

code(as	with	any	other	tag).	However,	you	can	align	an	image	with
the	surrounding	text	or	paragraph	by	setting	any	of	align="left	|	right
|	top	|	bottom	|	middle".
	
	

	

HTML	Tables
	
Table	tags	are	used	for	displaying	data	in	rows	and	columns.	The	HTML
tables	allow	web	authors	to	arrange	data	like	text,	images,	links,	other
tables,	etc.	into	rows	and	columns	of	cells.

The	HTML	tables	are	created	using	the	<table>	tag	in	which	the	A
table	 is	 divided	 into	 rows	with	 the	<tr>	 tag,	which	 stands	 for	 table	 row,
and	each	row	is	divided	into	data	cells	with	the	<td>	tag,	which	stands	for
table	data.	A	<td>	tag	can	contain	 text,	 links,	 images,	 lists,	 forms,	other
tables,	etc.
	

<table>	...	</table>:	Used	to	define	a	table,	it	contains	all	row	and
column	tags	along	with	their	content.	It	has	some	attributes	to	define	the
table	layout.

border="?"	-	The	size	of	the	border	(in	pixels)	surrounding	the	table
cellspacing="?"	-	The	space	(in	pixels)	between	each	cell,	eg.
between	rows	or	columns.
cellpadding="?"	-	The	space,	or	margin,	between	the	content	of	a
cell	and	its	border.

	
<tr>	</tr>:	To	start	a	table	row,	the	tr	tags	must	appear	within	the	table
tags.
	
<td>	</td>:A	table	cell	is	where	the	content	goes.	Cells	must	exist	within
rows,	where	the	number	of	cells	in	a	row	determines	the	number	of
columns	in	the	table.

	
Cell	properties	can	be	set	using	the	attributes:
align="?"	-	Alignment	of	text	in	the	cell:	left,	center	or	right
valign="?"	-	Vertical	alignment	of	the	cell:	top,	middle	or	bottom.
width="?"	-	Specify	a	fixed	with	of	a	cell,	by	default	they	will	only
take	up	as	much	space	as	they	need.

colspan="?"	-	Column	spanning	allows	a	cell	to	take	up	more	than
one	column,	in	order	to	match	layouts	of	other	rows.	Replace	?	with
the	number	of	columns	to	span.
rowspan="?"	-	Row	spanning,	similar	to	column	spanning,	forces	a
cell	to	occupy	more	than	one	row.
nowrap	-	No	text	in	the	cell	will	be	wrapped	onto	the	next	line.
Similar	to	the	nobr	tag	for	paragraphs
	

<th>	</th>:Similar	to	a	table	cell,	a	header	cell	must	appear	within	a
table	row.	Normally	found	in	the	first	row,	header	cells	are	usually	shown
in	bold	and	centered	by	the	browser.
	
<html>
<body>
		<table	border="1">
			<tr>
				<th>Header	1</td>
				<th>Header	2</td>
			</tr>
			<tr>
				<td>Cell	A1</td>
				<td>Cell	B1</td>
			</tr>
			<tr>
				<td>Cell	A2</td>
				<td>Cell	B2</td>
			</tr>
		</table>
</body>
</html>
	

HTML	-	Table	Spanning	Multiple	Rows	and	Cells
Spanning	 allow	 you	 to	 extend	 columns	 and	 rows	 across	multiple	 other
columns	 and	 rows.	 Normally,	 when	 we	 creating	 a	 table	 cell,	 it	 cannot
pass	over	into	the	space	below	or	above	another	table	cell.	But,	you	can
use	the	colspan	attribute	to	span	multiple	columns	and	rowspan	attribute
to	span	multiple	rows	in	a	table.	Here's	is	an	example:

	
	

HTML	Table	Rowspan	Attribute:
<table	border="1">
<tr>
<td>Column	1</td>
<td>Column	2</td>
<td>Column	3</td>
</tr>
<tr>
<td	rowspan="2">Row	1	Cell	1</td>
<td>Row	1	Cell	2</td>
<td>Row	1	Cell	3</td>
</tr>
<tr>
<td>Row	2	Cell	2</td>
<td>Row	2	Cell	3</td>
</tr>
<tr>
<td	colspan="3">Row	3	Cell	1</td>
</tr>
</table>
	

HTML	Colspan	and	Rowspan	Attributes:
Column	1 Column	2 Column	3

Row	1	Cell	1
Row	1	Cell	2Row	1	Cell	3

Row	2	Cell	2Row	2	Cell	3

Row	3	Cell	1

	
	

HTML	Table	Cell	Padding	and	Spacing
The	cell-padding	and	cell-spacing	attributes	are	used	to	adjust	white
space	inside	a	table.

Cell-padding	adjust	the	white	space	between	table	cell	border
and	its	content.
Cell-spacing	adjust	the	white	space	between	table	cells.

	
HTML	Cellpadding/Cellspacing	Code:
	
	

<table	border="1"	cellspacing="10"	>
<tr>
<td>Column	1</td>
<td>Column	2</td>
</tr>
<tr>
<td>Row	1	Cell	1</td>
<td>Row	1	Cell	2</td>
</tr>
<tr>
<td>Row	2	Cell	1</td>
<td>Row	2	Cell	2</td>
</tr>
</table>
	

	

HTML	Cellspacing	and	Padding:
Column	1 Column	2

Row	1	Cell	1 Row	1	Cell	2

Row	2	Cell	1 Row	2	Cell	2

	

	

HTML	Forms
	
What	is	HTML	Form

HTML	 Forms	 are	 required	 to	 collect	 different	 kinds	 of	 user
inputs,	such	as	contact	details	like	name,	email	address,	phone
numbers,	or	details	like	credit	card	information,	etc.
Forms	contain	special	elements	called	controls	 like	 input	box,
check	boxes,	radio-buttons,	submit	buttons,	etc.
Users	generally	complete	a	form	by	modifying	its	controls	e.g.
entering	text,	selecting	items,	etc.	and	submitting	this	form	to	a
web	server	for	processing.
The	<form>	tag	is	used	to	create	an	HTML	form.

	
Form	-	<form>	...	</form>:	All	form	elements	such	as	inputs	and	buttons
must	go	within	the	form	tags.	In	most	cases,	a	form	must	have	the	name,
action	&	method	attributes	set.

name="?"	-	A	unique	name	identifying	the	form,	used	by	the
action	script.
action="url"	-	The	address	(URL)	of	the	script	that	will	process
the	form	data	when	submitted.
method="?"	-	The	method	used	by	the	action	script,	post	or
get.	For	example,	post	would	be	used	to	submit	data	to	a	user-
registration	form,	and	get	is	used	for	searches	or	forms	that
must	return	information.

	
Input	Field	-	<input>:	Used	to	create	a	simple	text-entry	field	for	your	form,
but	is	also	the	basis	for	many	other	form	input	types	using	the	type	attribute.	An
input	element	can	be	of	type	text	field,	checkbox,	password	field,	radio
button,	submit	button,	reset	button,	etc.

	
name="?"	-	Unique	name	for	the	input	to	be	used	by	the	action
script.
type="?"	-	There	are	several	types	of	form	input	fields,	text,
password,	checkbox,	radio,	file,	image,	&	hidden	are	among	the
most	common.
value="?"	-	Initial	value	or	data	displayed	in	the	input	field	when
the	form	is	first	loaded.

https://www.tutorialrepublic.com/html-reference/html-form-tag.php

size="?"	-	Defines	the	input	size	or	width,	typically	defined	in
terms	of	number	characters	wide	instead	of	pixels.
maxlength="?"	-	Maximum	length	of	input	field,	such	as	the
maximum	number	of	characters	for	a	text	input.
checked	-	Used	with	checkbox	and	radio	inputs,	it	sets	the	field
default	to	be	already	checked.

	
Selection	List	-	<select>	...	</select>:	A	drop-down	list,	also	refered	to
as	a	combo-box,	allowing	a	selection	to	be	made	from	a	list	of	items.

name="?"	-	Selector	name
size="?"	-	The	minimum	size	(width)	of	the	selection	list,	usually
not	required	as	the	size	of	the	items	will	define	the	list	size.
multiple	-	Allows	a	user	to	select	multiple	items	from	the	list,
normally	limited	to	one.

	
Selection	Item	-	<option>	</option>:	An	option	tag	is	needed	for	each
item	in	the	list,	and	must	appear	within	the	select	tags.	The	text	to	be
shown	for	the	option	must	appear	between	the	option	tags.

value="?"	-	The	value	is	the	data	sent	to	the	action	script	with
the	option	is	selected.	This	is	not	the	text	that	appears	in	the
list
selected	-	Sets	the	default	option	that	is	automatically	selected
when	the	form	is	shown.

	
Large	Text	Area	-	<textarea>	</textarea>:	An	input	that	allows	a	large
amount	of	text	to	be	entered,	and	allows	the	height	of	input	box	to	be	a
specified	unlike	the	standard	input	tag.

name="?"	-	The	unique	name	assigned	to	the	form	field.
rows="?"	-	The	number	of	rows	of	text,	defines	the	vertical	size
of	the	text	area.
cols="?"	-	The	horizontal	size	of	the	text	box,	defined	as	the
number	of	characters	(ie.	columns).

Text	Fields:
<input	type="text">	defines	a	one-line	input	field	that	a	user	can	enter	text
into:

Ex:	<form>
First	name:	<input	type="text"	name="firstname">

Last	name:	<input	type="text"	name="lastname">
</form>

How	the	HTML	code	above	looks	in	a	browser:

First	name:	
Last	name:

Note:	The	form	itself	is	not	visible.	Also	note	that	the	default	width	of	a
text	field	is	20	characters.	

Password	Field:
<input	type="password">	defines	a	password	field:

Ex:	<form>
Password:	<input	type="password"	name="pwd">
</form>

How	the	HTML	code	above	looks	in	a	browser:

Password:

Note:	The	characters	in	a	password	field	are	masked	(shown	as
asterisks	or	circles).

Radio	Buttons:
<input	type="radio">	defines	a	radio	button.	Radio	buttons	let	a	user
select	ONLY	ONE	of	a	limited	number	of	choices:

Ex:	<form>
<input	type="radio"	name="sex"	value="male">Male

<input	type="radio"	name="sex"	value="female">Female
</form>

How	the	HTML	code	above	looks	in	a	browser:
Male
Female

Checkboxes:
<input	type="checkbox">	defines	a	checkbox.	Checkboxes	let	a	user
select	ZERO	or	MORE	options	of	a	limited	number	of	choices.

Ex:	<form>
<input	type="checkbox"	name="vehicle"	value="Bike">I	have	a	bike

<input	type="checkbox"	name="vehicle"	value="Car">I	have	a	car	
</form>

How	the	HTML	code	above	looks	in	a	browser:
I	have	a	bike
I	have	a	car

Submit	Button:
<input	type="submit">	defines	a	submit	button.

A	submit	button	is	used	to	send	form	data	to	a	server.	The	data	is	sent	to
the	page	specified	in	the	form's	action	attribute.	The	file	defined	in	the
action	attribute	usually	does	something	with	the	received	input:

Ex:	<form	name="input"	action="demo_form_action.asp"	method="get">
Username:	<input	type="text"	name="user">
<input	type="submit"	value="Submit">
</form>

How	the	HTML	code	above	looks	in	a	browser:

Username:

If	you	type	some	characters	in	the	text	field	above,	and	click	the	"Submit"
button,	the	browser	will	send	your	input	to	a	page	called
"demo_form_action.asp".	The	page	will	show	you	the	received	input.

Ex:	<FORM	action="http://somesite.com/prog/adduser"	method="post">
			<P>	First	name:	<INPUT	type="text"	name="firstname">

				Last	name:	<INPUT	type="text"	name="lastname">

				email:	<INPUT	type="text"	name="email">

				<INPUT	type="radio"	name="gender"	value="Male">	Male

				<INPUT	type="radio"	name="gender"	value="Female">	Female

				<BUTTON	name="submit"	value="submit"	type="submit">
				Send</BUTTON>
				<BUTTON	name="reset"	type="reset">
				Reset</BUTTON>
				</P>

</FORM>
	

	

Unit	–	II
	

What	is	CSS?
CSS	stands	for	Cascading	Style	Sheets.	Styles	define	how
to	display	HTML	elements.
CSS	is	a	design	language	intended	to	simplify	the	process
of	making	web	pages	presentable.
CSS	handles	the	look	and	feel	part	of	a	web	page.
Using	CSS,	1)	you	can	control	the	color	of	the	text,	the	style
of	fonts,	the	spacing	between	paragraphs,	how	columns	are
sized	and	laid	out,	what	background	images	or	colors	are
used,	layout	designs,	and	variations	in	display	for	different
devices	and	screen	sizes	as	well	as	a	variety	of	other	effects.

2)	Saves	a	lot	of	time	-	CSS	style	definitions	are	saved	in	external	CSS
files	so	it	is	possible	to	change	the	entire	website	by	changing	just	one	file.
3)	Provide	more	attributes	-	CSS	provides	more	detailed	attributes	than
plain	HTML	to	define	the	look	and	feel	of	the	website.

Advantages	of	CSS:
CSS	saves	time	-	You	can	write	CSS	once	and	then	reuse
same	sheet	in	multiple	HTML	pages.	You	can	define	a	style
for	each	HTML	element	and	apply	it	to	as	many	Web	pages
as	you	want.
Pages	load	faster	-	If	you	are	using	CSS,	you	do	not	need	to
write	HTML	tag	attributes	every	time.	Just	write	one	CSS

rule	of	a	tag	and	apply	to	all	the	occurrences	of	that	tag.	So
less	code	means	faster	download	times.
Easy	maintenance	-	To	make	a	global	change,	simply
change	the	style,	and	all	elements	in	all	the	web	pages	will
be	updated	automatically.
Superior	styles	to	HTML	-	CSS	has	a	much	wider	array	of
attributes	than	HTML	so	you	can	give	far	better	look	to	your
HTML	page	in	comparison	of	HTML	attributes.
Multiple	Device	Compatibility	-	Style	sheets	allow	content
to	be	optimized	for	more	than	one	type	of	device.	By	using
the	same	HTML	document,	different	versions	of	a	website
can	be	presented	for	handheld	devices	such	as	PDAs	and	cell
phones	or	for	printing.
Global	web	standards	-	Now	HTML	attributes	are	being
deprecated	and	it	is	being	recommended	to	use	CSS.	So	it’s
a	good	idea	to	start	using	CSS	in	all	the	HTML	pages	to
make	them	compatible	to	future	browsers.

	

CSS	Syntax:
A	CSS	comprises	of	style	rules	that	are	interpreted	by	the	browser	and
then	applied	to	the	corresponding	elements	in	your	document.	A	style
rule	is	made	of	three	parts:

Selector:	A	selector	is	an	HTML	tag	at	which	style	will	be
applied.	This	could	be	any	tag	like	<h1>	or	<table>	etc.
Property:	A	property	is	a	type	of	attribute	of	HTML	tag.	Put
simply,	all	the	HTML	attributes	are	converted	into	CSS

properties.	They	could	be	color	or	border	etc.
Value:	Values	are	assigned	to	properties.	For	example	color
property	can	have	value	either	red	or	#F1F1F1	etc.

Basic	Structure	of	a	Style

The	selector	points	to	the	HTML	element	you	want	to	style.
The	declaration	block	contains	one	or	more	declarations
separated	by	semicolons.
Each	declaration	includes	a	CSS	property	name	and	a	value,
separated	by	a	colon.
A	CSS	declaration	always	ends	with	a	semicolon,	and
declaration	blocks	are	surrounded	by	curly	braces.

Example:

1.	 h1	{	font-size:12;	color:red;	}
2.	 p	{	color:	red;	text-align:	center;	}

	

CSS	tags	are	also	known	as	elements	or	selectors.	They	have
a	basic	layout	very	similar	to	regular	HTML	tags.	

Regular
HTML
tag

<tag	property="value">

CSS
command
tag

element	{property:	value;}

	
	

CSS	Types	(CSS	Styles):	There	three	ways	of	applying	a	style	sheet:
1.	 External	style	sheet
2.	 Internal	style	sheet
3.	 Inline	style

	

1.	 External	Style	Sheet
An	external	style	sheet	is	ideal	when	the	style	is	applied	to	many
pages.	Most	websites	today	use	external	style	sheets.	External
styles	are	styles	that	are	written	in	a	separate	document	and	then
attached	to	various	web	documents.	With	an	external	style	sheet,
you	can	change	the	look	of	an	entire	Web	site	by	changing	one	file.
This	makes	long	term	site	management	much	easier.	Each	page
must	link	to	the	style	sheet	using	the	<link>	tag.	The	<link>	tag
goes	inside	the	head	section.
<link	rel="stylesheet"	type="text/css"	href="mystyle.css"	/>
	

Attributes	of	link	tag:
rel:	The	rel	attribute	specifies	the	relationship	between	the

current	document	and	the													the	linked	document
type:	Specifies	the	style	sheet	language	as	a	content-type.	This

attribute	is	required.
href:	Specifies	the	style	sheet	file	having	Style	rules.	This	attribute

is	a	required.
<head>
<link	rel="stylesheet"	type="text/css"	href="mystyle.css"	/>

</head>
	

An	external	style	sheet	can	be	written	in	any	text	editor.	The	file
should	not	contain	any	html	tags.	Your	style	sheet	should	be	saved
with	a	.css	extension.	An	example	of	a	style	sheet	file	is	shown
below:

	

hr	{color:	sienna;}
p	{margin-left:20px;}
body	{background-image:	url("images/back40.gif");}

	
	

2.	 Internal	Style	Sheet	(Embedded	Style	Sheet):
Embedded	styles	are	styles	that	are	embedded	in	the	head	of	the
document.	An	internal	style	sheet	should	be	used	when	a	single
document	has	a	unique	style.	You	define	internal	styles	in	the	head
section	of	an	HTML	page,	by	using	the	<style>	tag,	like	this:
<html>
<head>

<title>	Embedded	Style	Sheet	</title>
<style	type="text/css">
						hr	{color:sienna;}
						p	{margin-left:20px;}
						body	{background-image:	url("images/back40.gif");}
</style>

</head>
<body>

<p>	This	is	an	Example	of	Embedded	Style	Sheet</p>
<hr>
</body>
</html>

	

3.	 Inline	Styles
An	inline	style	loses	many	of	the	advantages	of	style	sheets	by
mixing	content	with	presentation.	Use	this	method	sparingly!
	

To	use	inline	styles	you	use	the	style	attribute	in	the	relevant	tag.
The	style	attribute	can	contain	any	CSS	property.	The	example
shows	how	to	change	the	color	and	the	left	margin	of	a	paragraph:

				
<p	style="color:	sienna;margin-left:20px">This	is	a	paragraph.

</p>
	

CSS	Selectors:
The	different	styles	that	we	can	use	to	apply	on	css	elements	can	be
done	by	using	different	types	of	css	selectors.
	

1)	CSS	Element	Selector:	The	element	selector	selects	the	HTML
element	by	name.

Ex:	p	{		
							text-align:	center;		

						color:	blue;		
			}			

2)	CSS	Id	Selector:	The	id	selector	selects	the	id	attribute	of	an	HTML	element
to	select	a	specific	element.	An	id	is	always	unique	within	the	page	so	it	is

chosen	to	select	a	single,	unique	element.	It	is	written	with	the	hash	character
(#),	followed	by	the	id	of	the	element.	Let’s	take	an	example	with	the	id	"para1".

<html>		
<head>		
<style>		
#para1	{						text-align:	center;						color:	blue;		}		
</style>		
</head>		
<body>		
<p	id="para1">Hello	CSS	</p>		
<p>This	paragraph	will	not	be	affected.</p>		
</body>		
</html>				

3)	CSS	Class	Selector:	The	class	selector	selects	HTML	elements	with	a
specific	class	attribute.	It	is	used	with	a	period	character.	(full	stop	symbol)
followed	by	the	class	name.

<!DOCTYPE	html>		
<html>		
<head>		
<style>		
.center	{						text-align:	center;						color:	blue;		}		
</style>		
</head>		
<body>		
<h1	class="center">This	heading	is	blue	and	center-
aligned.</h1>		
<p	class="center">This	paragraph	is	blue	and	center-

aligned.</p>			
</body>		
</html>		

4)	CSS	Universal	Selector:	The	universal	selector	is	used	as	a	wildcard
character.	It	selects	all	the	elements	on	the	pages.

<!DOCTYPE	html>		
<html>		
<head>		
<style>		
*	{					color:	green;					font-size:	20px;		}			
</style>		
</head>		
<body>		
<h2>This	is	heading</h2>		
<p>This	style	will	be	applied	on	every	paragraph.</p>		
<p	id="para1">Me	too!</p>		
<p>And	me!</p>		
</body>		
</html>				

5)	CSS	Group	Selector:	The	grouping	selector	is	used	to	select	all	the	elements
with	the	same	style	definitions.	Grouping	selector	is	used	to	minimize	the	code.
Commas	are	used	to	separate	each	selector	in	grouping.

<html>		
<head>		
<style>		
h1,	h2,	p	{		text-align:	center;		color:	blue;		}		
</style>		

</head>		
<body>		
<h1>Hello	Javatpoint.com</h1>		
<h2>Hello	Javatpoint.com	(In	smaller	font)</h2>		
<p>This	is	a	paragraph.</p>		
</body>		
</html>		

	

The	Span	and	Div	tags
The	SPAN	and	DIV	HTML	tags	are	very	useful	for	use	with	CSS.

	

The	DIV	Element
Div	(short	for	division)	divides	the	content	into	individual	sections.	Each	section	can	then	have	its	own
formatting,	as	specified	by	the	CSS.	Div	is	a	block-level	container,	meaning	that	there	is	a	line	feed	after	the

</div>	tag.	The	DIV	element	defines	logical	divisions	on	your	web	page.	It	acts	a	lot	like	a	P	element,	by
placing	newlines	or	carriage	returns	before	and	after	the	division.	A	division	can	have	multiple	paragraphs
in	it.	The	<div>	element	is	a	block-level	element.
	

Using	the	DIV	Tag

To	use	the	DIV	element,	surround	the	area	of	your	page	that	you	want	as	a	separate	division	with

the	<div>	and	</div>	tags:
<div>
<p>contents	of	div</p>
</div>
The	DIV	element	allows	you	to	define	the	style	of	entire	sections	of
the	HTML.	You	can	define	a	division	of	your	page	as	a	callout	and
give	that	area	a	different	style	from	the	surrounding	text.	That	area
may	have	images,	paragraphs,	and	headlines	anything	you	wanted.
The	DIV	element	also	gives	you	the	ability	to	identify	unique	areas	of

http://webdesign.about.com/od/htmltags/p/bltags_span.htm
http://webdesign.about.com/od/htmltags/p/bltags_div.htm
http://webdesign.about.com/od/htmltags/g/bldeflogicaldiv.htm
http://webdesign.about.com/od/htmltags/p/bltags_p.htm
http://webdesign.about.com/od/htmltags/qt/tipdivblock.htm

your	documents.	The	most	important	attributes	of	the	DIV	element
are:

style
class
id

	

Example:
<html>
<body>
<div	style="background-color:	black;
color:	white;
padding:	20px;">
<h2>London</h2>
<p>London	is	the	capital	city	of	England.	It	is	the	most	populous	city
in	the	United	Kingdom,	with	a	metropolitan	area	of	over	13	million
inhabitants.</p>
<p>Standing	on	the	River	Thames,	London	has	been	a	major
settlement	for	two	millennia,	its	history	going	back	to	its	founding	by
the	Romans,	who	named	it	Londinium.</p>
</div>
</body>
</html>
	

The	Span	Tag
Span	is	similar	to	div	in	that	they	both	divide	the	content	into
individual	sections.	The	difference	is	that	span	goes	into	a	finer	level,
so	we	can	span	to	format	a	single	character	if	needed.	There	is	no	line
feed	after	the		tag.

http://webdesign.about.com/od/htmltags/p/blatstyle.htm
http://webdesign.about.com/od/htmltags/p/blatclass.htm
http://webdesign.about.com/od/htmltags/p/blatid.htm

The	main	difference	between	the	SPAN	and	DIV	elements	is
that	SPAN	doesn’t	do	any	formatting	of	it’s	own.	As	mentioned
above,	the	DIV	element	includes	a	paragraph	break.	The	SPAN	element
simply	tells	the	browser	to	apply	the	style	rules	to	whatever	is	within
the	SPAN.
To	use	the	SPAN	element,	simply	surround	the	text	that	you	want	to
add	styles	to	with	the		and		tags.	The	SPAN	element
has	no	required	attributes,	but	the	three	that	are	the	most	useful	are	the
same	as	for	the	DIV	element:

style
class
id

Use	SPAN	when	you	want	to	change	the	style	of	elements	without
placing	them	in	a	new	block-level	element	in	the	document.	For	example,
if	you	had	a	Level	3	Heading	(H3)	that	you	wanted	the	second	word	to
be	red,	you	could	surround	that	word	with	<span	style="color:
#f00;">2ndWord	and	it	would	still	be	a	part	of	the	H3	tag,	just
red.
Ex:

<h3>This	is	My	<span	style="color:
red;">Awesome	Headline</h3>

<p>	My	mother	has	<span	style="color:	blue;	font-weight:
bold">blue	eyes	and	my	father	has	<span	style="color:
darkolivegreen;	font-weight:	bold">dark	green	eyes.
</p>

	

CSS3:
Cascading	Style	Sheets	Level	3	(CSS3)	is	the	iteration	of	the	CSS
standard	used	in	the	styling	and	formatting	of	Web	pages.	CSS3

http://desktoppub.about.com/od/typespacing/tp/Break_Up_Text.htm
http://webdesign.about.com/od/htmltags/g/bldefinlineelem.htm
http://webdesign.about.com/od/htmltags/g/bldefblocklevel.htm

incorporates	the	CSS2	standard	with	some	changes	and
improvements.	A	key	change	is	the	division	of	standard	into	separate
modules,	which	makes	it	easier	to	learn	and	understand.	CSS3	permits
to	pick	out	additional	hypertext	markup	language	tags	and	outline
however	they're	displayed	on	an	online	browser.	CSS3	is	divided	into
several	separate	documents	called	"modules".	Some	of	the	most
important	CSS3	modules	are:	–

Selectors
Box	Model
Backgrounds	and	Borders
Text	Effects
2D/3D	Transformations
Animations
Multiple	Column	Layout
User	Interface

	

CSS3	Borders:
A	CSS3	Border	is	such	an	afford	of	style	sheet	which	reduces	the
human	efforts	of	Photoshop	and	other	graphical	applications.	An
individual	can	create	the	rounded	borders,	border	shadow,	imaged
based	border	and	etc.	with	the	help	of	CSS3	Border.	Basically	we	use
three	features	to	create	the	border:

border-radius
box-shadow
border-image

	

border-radius	is	a	such	property	of	CSS3	by	which	we	can

create	the	rounded	corners.	In	CSS3,	creating	rounded	corners
is	easy.	In	CSS3,	the	border-radius	property	is	used	to	create
rounded	corners:	div	{	border:	2px	solid;	border-radius:	25px;
}

	

box-shadow	is	a	such	property	of	CSS3	by	which	we	can
create	the	shadow	of	the	border.	Easy	and	cool,	no	need	to
write	more	code,	just	specify	the	location	of	image	and	assign
the	selector	to	the	element.

	

border-image	is	a	such	property	of	CSS3	by	which	we	can
create	the	customized	border,	as	we	can	put	our	own	image	as	a
border.	Easy	and	cool,	no	need	to	write	more	code,	just	specify
the	location	of	image	and	assign	the	selector	to	the	element.

	

Creating	CSS3	Rounded	Corners
The	border-radius	property	can	be	used	to	create	rounded	corners.
This	property	typically	defines	the	shape	of	the	corner	of	the	outer
border	edge.	Prior	to	CSS3,	sliced	images	are	used	for	creating	the
rounded	corners	that	was	rather	bothersome.CSS3	Rounded	corners
are	used	to	add	special	colored	corner	to	body	or	text	by	using	the
border-radius	property.A	simple	syntax:
#rcorners7	{
border-radius:	60px;
background:	#FF0000;
padding:	20px;
width:	200px;

height:	150px;
}
border-radius Use	this	element	for	setting	four	boarder	radius

property
border-top-left-
radius

Use	this	element	for	setting	the	boarder	of	top
left	corner

border-top-right-
radius

Use	this	element	for	setting	the	boarder	of	top
right	corner

border-bottom-
right-radius

Use	this	element	for	setting	the	boarder	of
bottom	right	corner

border-bottom-left-
radius

Use	this	element	for	setting	the	boarder	of
bottom	left	corner

	

Ex:		<html>
								<head>
									<title>Title	Name	will	go	here</title>
							</head>
							<style>
								#border_radius
								{
												border:10px	solid;
												font-size:	24px;
												color:	#00ff00;
												font-weight:	bold;
												padding:	10px;
												background:	#000FCF;
												border-top-left-radius:25px;

												border-bottom-right-radius:25px;
								}
							#border_image
								{
												border-width:	15px;

				border-radius:15px;
												border-image:url(tulips.jpg)	30	30	round;	/*	Firefox	*/
												border-image:url(4.jpg)	30	30	round;	/*	Safari	and
Chrome	*/
								}															
					</style>
				<body>
									<div	id="border_radius">			With	the	help	of	border-radius	
properties,	we	can	make	the	rounded	corners	border.		</div>
								<div	id="border_image">			You	can	see	the	customized
border.	This	could	be	either	*.png	or	*.jpg	format.			</div>							
				</body>
		</html>
	

CSS3	Background:
CSS3	provided	several	new	background	properties	which	facilitate
background	control.	The	newly	specified	properties	in	CSS3	for
background	are:
background-clip Specifying	the	painting	area	of	the	background	images

background-originWhere	the	background	will	be	painted

background-size Determining	the	size	of	the	background-image
	

Background-clip:
The	background-clip	property	defines	how	far	the	background	(color
or	image)	should	extend	within	an	element.	We	can	make	the
background	cover	just	the	padding-box	or	just	the	content-box	with
the	help	of	background-clip.	Clipping	means	cutting	out	and	not
displaying	what	falls	outside	the	clipping	region.	It	lets	you	control
how	far	a	background	image	or	color	extends	beyond	an	element's
padding	or	content.
Syntax:
background-clip:	border-box|padding-box|content-box;
Values:

border-box	is	the	default	value.	This	allows	the	background
to	extend	all	the	way	to	the	outside	edge	of	the	element's
border.
padding-box	clips	the	background	at	the	outside	edge	of	the
element's	padding	and	does	not	let	it	extend	into	the	border.
content-box	clips	the	background	at	the	edge	of	the	content
box.

If	the	padding	is	0,	then	the	padding-box	is	exactly	the	same
size	as	the	content-box,	and	the	content	limit	coincides	with	the
padding	limit.
If	the	border-width	is	0,	the	border-box	is	the	same	size	as
the	padding-box,	and	the	border	limit	coincides	with	the
padding	limit.
If	both	the	padding	and	the	border-width	are	0,	then	all	the
three	boxes	(the	content-box,	the	padding-box,	and	the	border-
box)	have	the	same	size,	and	the	content	limit,	the	padding
limit,	and	the	border	limit	all	coincide.

Ex:Specify	how	far	the	background	should	extend	within	an	element:
div	{
				border:	10px	dotted	black;
				padding:	15px;
				background:	lightblue;
				background-clip:	padding-box;

}
	

Background-size:
It's	sometime	needed	to	specify	a	certain	size	to	the	background
image.To	control	the	background	image	size,	all	you	need	to	do	is	to
use	background-size	property	in	body	selector	as	will	be	shown	in	the
following	code.
<!DOCTYPE	html>
<html>
<head>
<title>CSS3	Modules:	borders	&background	</title>
<style>
body	{
background:url(tulips.jpg);
background-size:180px	160px;
background-repeat:	no-repeat;
												}
</style>
</head>
<body>
</body>
</html>
Note:	if	you	didn't	specify	background-repeat	property	to	no-repeat,	it
will	repeat	the	images	several	times.	To	use	the	original	size	of	the
image	just	set	the	background	dimensions	to	auto,	instead	of	using
values.
	

Background-image:
The	background-image	property	in	CSS	applies	a	graphic	(e.g.	PNG,
SVG,	JPG,	GIF,	WEBP)	or	gradient	to	the	background	of	an	element.
The	background-image	property	sets	one	or	more	background	images
for	an	element.	By	default,	a	background-image	is	placed	at	the	top-
left	corner	of	an	element,	and	repeated	both	vertically	and
horizontally.	There	are	two	different	types	of	images	you	can	include
with	CSS:	regular	images	and	gradients.
Tip:	The	background	of	an	element	is	the	total	size	of	the	element,
including	padding	and	border	(but	not	the	margin).
Syntax:
background-image:	url|none;
values:

URL:	the	URL	of	the	image.	To	specify	more	than	one
image,	separate	with	comma.
None:	No	background	image	will	be	displayed.	This	is
default.
linear-gradient():Sets	a	linear	gradient	as	the	background
image.	Define	at	least	two	colors	(top	to	bottom)
radial-gradient():Sets	a	radial	gradient	as	the	background
image.	Define	at	least	two	colors	(center	to	edges)
repeat-linear-gradient():repeats	the	linear	gradient
repeat-radial-gradient():repeats	the	radial	gradient.

Ex1:			body	{
				background-image:	url("img_tree.gif"),	url("paper.gif");
				background-color:	#cccccc;

}
Ex2:		body	{
				background-image:	url("img_tree.gif"),	url("paper.gif");
				background-repeat:	no-repeat,	repeat;
				background-color:	#cccccc;
}
Ex3:	#grad1	{
				height:	250px;
				width:400px;
				padding:50px;
				background-image:	linear-gradient(orange,	white,	green);
}
	

Text-Effects:
CSS3	contains	several	new	text	features.	In	this	chapter	we	will	learn
about	the	following	properties:

text-overflow
word-wrap
word-break

Properties	provided	by	CSS3	for	text	editing	is	showing	below:
text-emphasis Applies	emphasis	marks

text-justify Justify	text

text-outline Specifies	a	text	outline

text-overflow Specify	behavior	is	the	text	overflow	it's	container

text-shadow Add	shadow	to	the	text	,	“like	fire	and	ice”

text-wrap Wrap	text	into	multiple	lines	according	to	certain	delimiter

word-break Specifies	line	breaking	rules

word-wrap
Break	long	words	and	divide	them	to	more	than	one	line
like:immunosuppressive	which	can	make	it	immune-
suppressive

	

Text-Overflow:
The	text-overflow	property	specifies	how	overflowed	content
that	is	not	displayed	should	be	signaled	to	the	user.	It	can	be
clipped,	display	an	ellipsis	(...),	or	display	a	custom	string.
Both	of	the	following	properties	are	required	for	text-overflow:

white-space:	nowrap;
overflow:	hidden;

The	CSS	text-overflow	property	specifies	how	overflowed
content	that	is	not	displayed	should	be	signaled	to	the	user.
The	text-overflow	property	only	affects	content	that	is
overflowing	a	block	container	element	in	its	inline	progression
direction	(not	text	overflowing	at	the	bottom	of	a	box,	for
example).

Syntax:
text-overflow:	clip	|	ellipsis	|	string	;
Values:
Clip Default	value.	The	text	is	clipped	and	not	accessible

Ellipsis Render	an	ellipsis	("...")	to	represent	the	clipped	text

String Render	the	given	string	to	represent	the	clipped	text
	

Ex:	<style>
div.a	{

				white-space:	nowrap;
				width:	50px;
				overflow:	hidden;
				text-overflow:	clip;
				border:	1px	solid	#000000;
}
div.b	{
				white-space:	nowrap;
				width:	50px;
				overflow:	hidden;
				text-overflow:	ellipsis;
				border:	1px	solid	#000000;
}
</style>
	

Word-wrapping:
Sometimes,	while	writing	in	a	container	on	a	web	page,	the
end	of	line	is	not	displayed	properly.	The	solution	was
provided	CSS3	in	word-wrap	property	which	wrap	the	long
words	to	the	next	line.
The	CSS	word-wrap	property	allows	long	words	to	be	able
to	be	broken	and	wrap	onto	the	next	line.	
If	a	word	is	too	long	to	fit	within	an	area,	it	expands	outside;
The	word-wrap	property	allows	you	to	force	the	text	to	wrap
-	even	if	it	means	splitting	it	in	the	middle	of	a	word.

Syntax:

word-wrap:	normal	|	break-word	|	initial;
Values:

Normal:	break	words	only	at	allowed	break	points.
Break-word:	allows	unbreakable	words	to	be	broken
Initial:	sets	this	property	to	its	default	value.

Ex:	Allow	long	words	to	be	able	to	break	and	wrap	onto	the	next	line:
div	{
				word-wrap:	break-word;
							}
	

Word-break:
The	word-break	property	in	CSS	can	be	used	to	change
when	line	breaks	ought	to	occur.
Normally,	line	breaks	in	text	can	only	occur	in	certain
spaces,	like	when	there	is	a	space	or	a	hyphen.	It	specifies
how	words	should	break	when	reaching	the	end	of	a	line.

Syntax:
word-break:	normal	|	break-all	|	keep-all	|	break-word;
Values:

normal:	use	the	default	rules	for	word	breaking.
break-all:	any	word/letter	can	break	onto	the	next	line.
keep-all:	for	Chinese,	Japanese	and	Korean	text	words	are
not	broken.	Otherwise	this	is	the	same	as	normal.
break-word:	to	prevent	overflow,	word	may	be	broken	at
arbitrary	points.

Ex:	p	{

word-break:	break-all;
}
	

Web	Fonts:
Web	fonts	allow	Web	designers	to	use	fonts	that	are	not	installed	on
the	user's	computer.	When	you	have	found/bought	the	font	you	wish
to	use,	just	include	the	font	file	on	your	web	server,	and	it	will	be
automatically	downloaded	to	the	user	when	needed.	Your	"own"	fonts
are	defined	within	the	CSS	@font-face	rule.
	

Different	Font	Formats:
When	you	purchase	web	fonts	licensing,	you	receive	a	package	of	font	files	that
typically	include	at	least	some	of	the	following	formats:

TrueType	Fonts	(TTF):	TrueType	is	the	most	common	font
format	for	both	the	Mac	OS	and	Microsoft	Windows
operating	systems.
OpenType	Fonts	(OTF):	OpenType	is	a	format	for	scalable
computer	fonts.	OpenType	fonts	are	used	commonly	today
on	the	major	computer	platforms.
The	Web	Open	Font	Format	(WOFF):	WOFF	is	a	font
format	for	use	in	web	pages.	WOFF	is	essentially	OpenType
or	TrueType	with	compression	and	additional	metadata.
SVG	Fonts/Shapes:	SVG	fonts	allow	SVG	to	be	used	as
glyphs	when	displaying	text.
Embedded	OpenType	Fonts	(EOT):	EOT	fonts	are	a
compact	form	of	OpenType	fonts	designed	by	Microsoft	for
use	as	embedded	fonts	on	web	pages.

We	make	use	of	@font-face	to	include	fonts	in	CSS.
Ex1:	@font-face	{
				font-family:	myFirstFont;
				src:	url(sansation_bold.woff);
				font-weight:	bold;
}
following	code	shows	the	sample	code	of	font	face
<html>
<head>
<style>
									@font-face	{
font-family:	myFirstFont;
src:	url(/css/font/SansationLight.woff);
									}
div	{
font-family:	myFirstFont;
									}
</Style>
</head>
<body>
<div>This	is	the	example	of	font	face	with	CSS3.</div>
<p>Original	Text	:This	is	the	example	of	font	face	with
CSS3.</p>
</body>
</html>
It	will	produce	the	following	result	–

https://css-tricks.com/snippets/css/using-font-face/

This	is	the	example	of	font	face	with	CSS3.
Original	Text:	This	is	the	example	of	font	face	with	CSS3.
Fonts	description
The	following	list	contained	all	the	fonts	description	which	are	placed
in	the	@font-face	rule	−
Values Description
font-family Used	to	defines	the	name	of	font
Src Used	to	defines	the	URL
font-stretch Used	to	find,	how	font	should	be	stretched
font-style Used	to	defines	the	fonts	style
font-weight Used	to	defines	the	font	weight(boldness)
	

CSS3	Transforms:
Using	the	new	CSS3	transform	property	you	can	create	element
transformations	and	to	change	the	shape,	size	and	position	of	the
element.	2D	transforms	are	used	to	re-change	the	element	structure.
The	transform	property	can	get	a	set	of	transformation	functions
which	can	be	composed	if	you	write	them	separated	by	whitespace.	
The	2D	transform	functions	included:

translate	–	given	left	and	top	parameters,	the	element	will
move	from	its	position	to	the	new	point.	There	are	also	a
translateX	and	translateY	functions	that	get	only	one
parameter	and	translate	the	element	only	in	one	axis.
rotate	–	given	a	degree	the	element	rotate	clockwise
according	to	the	degree.	Pay	attention	that	the	parameter
should	be	in	a	specific	format	for	example	these	are	valid
parameters:	60deg,	80deg	and	etc.

scale	–	given	a	width	and	height,	the	element	will	increase	or
decrease	its	size.	There	are	also	scaleX	and	scaleY	functions
that	get	only	one	parameter	and	scale	the	element	only	in
one	axis.
skew	–	given	x	degree	and	y	degree	parameters,	the	element
will	turn	in	the	given	angles	first	in	the	x-axis	and	then	in	the
y-axis.	There	are	also	skewX	and	skewY	functions	that	get
only	one	parameter	and	skew	the	element	only	in	one	axis.
matrix	–	given	six	a-f	parameters	apply	the	transformation
matrix	[a	b	c	d	e	f]	on	the	element.

	

3D	Transforms:	Using	with	3d	transforms,	we	can	move	element	to
x-axis,	y-axis	and	z-axis.	The	basic	functions	are:

1.	 rotateX()
2.	 rotateY()
3.	 rotateZ()

The	3D	transform	functions	included:
matrix3d	–	the	same	as	the	matrix	function	but	now	gets	16
parameters.
translate3d	–	gets	an	additional	z-axis	parameter.
scale3d	–	gets	an	additional	z-axis	parameter.	There	is	also
scaleZ	function	that	scale	the	element	only	in	the	z-axis.
rotate3d	–	gets	four	parameters	–	x,	y	and	z	that	define	the	[x
y	z]	direction	vector	and	a	degree	to	rotate	in	that	direction.
There	is	also	a	rotateZ	function	that	rotate	the	element	in	the
z-axis.

	

CSS	transitions
Introduction:
Transitions	 are	 the	 grease	 in	 the	 wheel	 of	 CSS	 transforms.	 CSS
transitions	provide	a	way	to	control	animation	speed	when	changing
CSS	 properties.	 Instead	 of	 having	 property	 changes	 take	 effect
immediately,	 you	 can	 cause	 the	 changes	 in	 a	 property	 to	 take	 place
over	 a	 period	 of	 time.	 By	 applying	 a	 transition	 you	 can	 control	 the
change,	making	it	smooth	and	gradual.	With	CSS	transitions	you	have
the	 potential	 to	 alter	 the	 appearance	 and	 behavior	 of	 an	 element
whenever	 a	 state	 change	 occurs,	 such	 as	 when	 it	 is	 hovered	 over,
focused	on,	active,	or	targeted.
	

Defining	transitions

CSS	Transitions	are	controlled	using	the	shorthand	transition	property.
You	can	control	the	individual	components	of	the	transition	with	the
following	sub-properties:
There	are	4	sub-properties	that	are	required	in	order	for	the	transition
to	take	effect:
1.	transition-property
2.	transition-duration
3.	transition-timing	(optional)
4.	transition-delay	(optional)
Here’s	the	full	shorthand	sequence.	Again,	the	first	two	properties	are
required.
	

div	{
		transition:	[property]	[duration]	[timing-function]	[delay];
}

https://robots.thoughtbot.com/transitions-and-transforms
https://robots.thoughtbot.com/transitions-and-transforms
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://robots.thoughtbot.com/transitions-and-transforms
https://robots.thoughtbot.com/transitions-and-transforms

1.	 transition-property	(required)

The	transition-property	specifies	the	CSS	property	where	the	transition
will	be	applied.	You	may	apply	a	transition	to	an	individual	property
(e.g.,	background-color	or	transform)	or	to	all	properties	in	the	rule-set
(i.e.,	all).
CSS	syntax	examples:
div	{
		transition-property:	all;
		transition-property:	transform;
}

	
2.	 transition-duration	(required)

The	transition-duration	property	specifies	the	time	span	of	the
transition.	You	can	specify	in	seconds	or	milliseconds.
CSS	syntax	example:
		div	{
				transition-duration:	3s;
		}
Shorthand	example:
div	{
		transition:	all	3s;
}

	
3.	 transition-timing	(optional)

The	transition-timing-function	property	allows	you	to	define	the	speed
of	the	transition	over	the	duration.	The	default	timing	is	ease,	which
starts	out	slow,	quickly	speeds	up,	and	then	slows	down	at	the	end.
The	other	timing	options	are:	linear,	ease,	ease-in,	ease-out,	and	ease-

https://robots.thoughtbot.com/transitions-and-transforms
https://robots.thoughtbot.com/transitions-and-transforms
https://robots.thoughtbot.com/transitions-and-transforms

in-out.
Here’s	an	example	of	the	different	timing	options	(used	with
the	transform:	translateproperty):
For	more	advanced	timing	options,	you	can	define	a	custom	timing
function	with	a	cubic-bezier.
CSS	syntax	example:
div	{
		transition-timing-function:	ease-in-out;
}
Shorthand	example:
div	{
		transition:	all	3s	ease-in-out;
}

	
4.	 transition-delay	(optional)

The	transition-delay	property	allows	you	to	specify	when	the
transform	will	start.	By	default,	the	transition	starts	as	soon	as	it	is
triggered	(e.g.,	on	mouse	hover).	However,	if	you	want	to	transition	to
start	after	it	is	triggered	you	can	use	the	transition	delay	property.
Shorthand	example:
div	{
		transition:	all	3s	1s;
}
A	negative	value	will	start	the	transition	immediately,	but	part	way
through	the	transition	process.
	

UNIT-III

https://developer.mozilla.org/en-US/docs/Web/CSS/timing-function
https://robots.thoughtbot.com/transitions-and-transforms

Introduction:
JavaScript	is	a	dynamic	scripting	language.	JavaScript	is	the	most	popular	scripting	language	on
the	 internet,	 and	 works	 in	 all	 major	 browsers,	 such	 as	 Internet	 Explorer,	 Mozilla,	 Firefox,
Netscape,	Opera.

JavaScript	 was	 first	 known	 as	 LiveScript,	 but	 Netscape	 changed	 its	 name	 to	 JavaScript.
JavaScript	made	its	first	appearance	in	Netscape	2.0	in	1995	with	the	name	LiveScript.	

1.	 JavaScript	was	designed	to	add	interactivity	to	HTML	pages

2.	 JavaScript	 is	 a	 scripting	 language	 (a	 scripting	 language	 is	 a	 lightweight
programming	language)

3.	 A	JavaScript	 consists	of	 lines	of	executable	computer	code,	JavaScript	 is	usually
embedded	directly	into	HTML	pages

4.	 JavaScript	 is	 an	 interpreted	 language	 (means	 that	 scripts	 execute	 without
preliminary	compilation)

5.	 It	 is	 client-side	 scripting	 language	 designed	 for	 creating	 network-centric
applications.

6.	 JavaScript	is	a	case	sensitive	language.

7.	 JavaScript	is	used	in	millions	of	Web	pages	to	improve	the	design,	validate	forms,
detect	browsers,	create	cookies,	and	much	more.

	

Advantages	of	Java	Script:

Client-Side	execution:	No	matter	where	 you	 host	 JavaScript,	 Execute	 always	 on
client	 environment	 to	 save	 a	 bandwidth	 and	 make	 execution	 process	 fast.	 Being
client-side	reduces	the	demand	on	the	website	server.

	
Interoperability.	JavaScript	plays	nicely	with	other	languages	and	can	be	used	in	a
huge	variety	of	applications.	Unlike	PHP	or	SSI	scripts,	JavaScript	can	be	inserted
into	 any	 web	 page	 regardless	 of	 the	 file	 extension.	 JavaScript	 can	 also	 be	 used
inside	scripts	written	in	other	languages	such	as	Perl	and	PHP.

	
Rapid	Development:	JavaScript	syntax's	are	easy	and	 flexible	 for	 the	developers.
JavaScript	small	bit	of	code	you	can	test	easily	on	Console	Panel	(inside	Developer
Tools)	at	a	time	browser	interpret	return	output	result.	In-short	easy	language	to	get
pick	up	in	development.

	

https://en.wikipedia.org/wiki/Server_Side_Includes

Browser	Compatible:	 The	 biggest	 advantages	 to	 a	 JavaScript	 having	 a	 ability	 to
support	all	modern	browser	and	produce	the	same	result.

	

Speed.	Client-side	JavaScript	is	very	fast	because	it	can	be	run	immediately	within
the	 client-side	 browser.	 Unless	 outside	 resources	 are	 required,	 JavaScript	 is
unhindered	by	network	calls	to	a	backend	server.	It	also	has	no	need	to	be	compiled
on	the	client	side	which	gives	it	certain	speed	advantages.

	
Extended	Functionality.	Third	party	add-ons	like	Greasemonkey	enable	JavaScript
developers	to	write	snippets	of	JavaScript	which	can	execute	on	desired	web	pages
to	extend	its	functionality.

	
User	Interface	Interactivity:	JavaScript	used	to	fill	web	page	data	dynamically	such
as	 drop-down	 list	 for	 a	 Country	 and	 State.	 Base	 on	 selected	 Country,	 State	 drop
down	 list	dynamically	 filled.	Another	one	 is	Form	validation,	missing/incorrect	 fields
you	can	alert	to	a	users	using	alert	box.

	

	

Where	to	place	JavaScript	code:

The	<script>	tag:

JavaScript	 can	 be	 implemented	 using	 JavaScript	 statements	 that	 are	 placed	 within
the	<script>...	</script>	HTML	tags	in	a	web	page.

You	can	place	 the	<script>	 tags,	containing	your	JavaScript,	anywhere	within	your	web	page,
but	it	is	normally	recommended	that	you	should	keep	it	within	the	<head>	tags.

The	script	tag	takes	two	important	attributes	−

Language	 −	 This	 attribute	 specifies	 what	 scripting	 language	 you	 are	 using.
Typically,	 its	 value	 will	 be	 javascript.	 Although	 recent	 versions	 of	 HTML	 (and
XHTML,	its	successor)	have	phased	out	the	use	of	this	attribute.

Type	 −	 This	 attribute	 is	 what	 is	 now	 recommended	 to	 indicate	 the	 scripting
language	in	use	and	its	value	should	be	set	to	"text/javascript".

There	is	a	flexibility	given	to	include	JavaScript	code	anywhere	in	an	HTML	document.	However
the	most	preferred	ways	to	include	JavaScript	in	an	HTML	file	are	as	follows	−

Script	in	<head>...</head>	section.

Script	in	<body>...</body>	section.

Script	in	<body>...</body>	and	<head>...</head>	sections.

Script	in	an	external	file	and	then	include	in	<head>...</head>	section

The	<script>	tag	alerts	the	browser	program	to	start	interpreting	all	the	text	between	these	tags
as	a	script.	A	simple	syntax	of	your	JavaScript	will	appear	as	follows.

So	your	JavaScript	segment	will	look	like	−

<script	language="javascript"	type="text/javascript">

			JavaScript	code

</script>

	

Ex:	<html>

				<body>

						<script	language="javascript"	type="text/javascript">

																	document.write("Hello	World!")

						</script>

			</body>

</html>

	

Data	Types	in	JavaScript:

JavaScript	provides	different	data	types	to	hold	different	types	of	values.	There	are	two	types	of
data	types	in	JavaScript.

1.	 Primitive	data	type

2.	 Non-primitive	(reference)	data	type

JavaScript	 is	a	dynamic	 type	 language,	means	you	don't	 need	 to	 specify	 type	of	 the	variable
because	it	is	dynamically	used	by	JavaScript	engine.	You	need	to	use	var	here	to	specify	the	data
type.	It	can	hold	any	type	of	values	such	as	numbers,	strings	etc.	For	example:

var	a=40;//holding	number		
var	b="Rahul";//holding	string		

	
Primitive	data	types:	these	are	the	primary	data	types	in	javaScript

Boolean-	A	value	which	can	ony	be	either	true	or	false.

	
Number	–	Any	numeric	value	whether	an	integer	number	or	float	number.

Eg:	12	,	3.1415
	

String:	A	group	of	characters	represents	string.	i.e	text.	A	string	can	be	enclosed	by
a	pair	of	single	quotes	(')	or	double	quote	(").

Eg:	“welcome”
	

Null	–	it	defines	a	single	value,	the	only	value	is	"null"	–	to	represent	nothing.
Undefined:	represents	undefined	value.	The	only	value	is	"undefined"	–	to	represent
the	value	of	an	uninitialized	variable.

	
	
Non-Primitive	data	types	(Reference	data	Types):

Object:	object	is	a	named	collection	of	data.	An	object	is	a	collection	of	properties.
Properties	can	be	variables	(Fields)	or	Functions	(Methods)
Array:	Array	is	a	sequence	of	values	(an	array	is	actually	a	predefined	object)
Regexp:	Represents	a	regular	expression.

	
JavaScript	Variables:
Like	many	other	programming	languages,	JavaScript	has	variables.	Variables	can	be	thought	of
as	named	containers.	You	can	place	data	into	these	containers	and	then	refer	to	the	data	simply
by	naming	the	container.
Before	you	use	a	variable	in	a	JavaScript	program,	you	must	declare	it.	Variables	are	declared
with	the	var	keyword	as	follows.
We	create	variables	and	assign	values	to	them	in	the	following	way:

var	christianName	=	"Fred" (string)

var	surname	=	"Jones" (string)

var	age	=	37 (numeric)

var	married	=	false (Boolean)

When	a	new	variable	is	created	(or	declared)	its	name	must	be	preceded	by	the
word	var
The	type	of	the	variable	is	determined	by	the	way	it	is	declared:

if	it	is	enclosed	within	quotes,	it's	a	string
if	it	is	set	to	true	or	false	(without	quotes)	it's	a	boolean
if	it	is	a	number	(without	quotes)	it's	numeric

We	refer	to	the	equals	sign	as	the	assignment	operator	because	we	use	it	to	assign
values	to	variables;
Variable	names	must	begin	with	a	letter	or	an	underscore
Variable	names	must	not	include	spaces

	

Dialog	boxes	in	JavaScript:
JavaScript	supports	 three	 important	 types	of	dialog	boxes.	These	dialog	boxes	can	be	used	to

raise	an	alert,	or	to	get	confirmation	on	any	input	or	to	have	a	kind	of	input	from	the	users.	Here

we	will	discuss	each	dialog	box	one	by	one.

Alert	dialog	box

Confirmation	dialog	box

Prompt	dialog	box

Alert	Dialog	Box:	An	alert	dialog	box	is	mostly	used	to	give	a	warning	message	to	the	users.
It	 is	used	to	show	a	message	in	the	dialog	box,	and	there	is	an	OK	button.	It	 is	mostly	used	to

prompt	message	 if	user	missed	 input	value	or	 invalid	data	 in	given	form	or	 text.	When	an	alert
box	pops	up,	the	user	will	have	to	click	"OK"	to	proceed.

Syntax:							window.alert("sometext");

Here	window	is	optional.

Eg:	1.	alert("I	am	an	alert	box!");

	

Var	price=10.00;						

alert("The	price	is	"+price);

	

Which	produces:

	

Confirmation	Dialog	Box:
A	confirmation	dialog	box	is	mostly	used	to	take	user's	consent	on	any	option.	It	displays	a	dialog
box	 with	 two	 buttons:	 Cancel.	 If	 the	 user	 clicks	 on	 the	 OK	 button,	 the	 window
method	confirm()	will	return	true.	If	the	user	clicks	on	the	Cancel	button,	then	confirm()	returns

false.

Syntax:							window.confirm("sometext");

Eg:		if	(confirm("Press	a	button!"))

{

																txt	=	"You	pressed	OK!";

						}	

else

{

																txt	=	"You	pressed	Cancel!";

						}

Prompt	Dialog	Box:
The	prompt	dialog	box	is	very	useful	when	you	want	to	pop-up	a	text	box	to	get	user	input.	Thus,
it	enables	you	to	interact	with	the	user.	The	user	needs	to	fill	in	the	field	and	then	click	OK.	This
dialog	 box	 has	 two	 buttons:	OK	 and	 Cancel.	 If	 the	 user	 clicks	 the	 OK	 button,	 the	 window
method	prompt()	will	 return	 the	entered	value	 from	 the	 text	 box.	 If	 the	user	 clicks	 the	Cancel
button,	the	window	method	prompt()returns	null.

Syntax:							window.prompt("sometext","defaultText");

Window	is	optional	here.

Eg:

price	=	prompt("Enter	the	price",	"10.00");

var	person	=	prompt("Please	enter	your	name");

which	produces	-
	

Apart	from	all	the	above
dialog	 boxes	 we	 can
also	 use	 the	 following
method	to	display.

document.write()	method	–	this	method	is	used	to	display	the	data	on	to	the	screen.

Eg:	document.write(“welcome”)

						document.write(23)

		a=45;						document.write(“a	=	“	+	a);												will	display:	a	=	45

	
JavaScript	Operators:

Operators	are	a	type	of	command.	They	perform	operations	on	variables	and/or	literals	and
produce	a	result.

Arithmetic	Operators:				+(addition),	-	(Subtraction),	*	(multiplication),	/	(Division
which	gives	quotient),and	%	(modulo	division	which	gives	remainder.)

Eg:	5/2=2	or	2.5	but	5%2=1

	
Relational	 (Comparison)	Operators:	 <,	 <=,	 >,	 >=,	 !=,	 !==,	 ==	 and	 ===(this	 will
check	with	type	of	data	also).

===,	 !==	 (Strictly	 equals	 and	 strictly	 not	 equals)	 i.e.,	 Type	 and	 value	 of	 operand	must
match	/	must	not	match
Eg:							var	v2	=	("5"	===	5);						//	false

var	v3	=	(5	===	5.0);	//	true
	

Logical	Operators:

1.	 !	–	Logical	NOT-
!OP1
!0=1		and		!1=0	i.e	!(true)=false,	!(false)=true

2.	 &&	–	Logical	AND
OP1	&&	OP2
If	OP1	is	true,	expression	evaluates	to	the	value	of	OP2.

Otherwise	the	expression	evaluates	to	the	value	of	OP1.
Results	may	not	be	a	boolean	value.

3.	 ||	–	Logical	OR
OP1	||	OP2
If	OP1	 is	 true,	 expression	evaluates	 to	 the	 value	of	OP1.	Otherwise	 the	expression
evaluates	to	the	value	of	OP2.
Assignment	 Operators:	 =,	 +=,	 -=,*=,	 /=,	 %=.	 These	 are	 shorthand	 assignment
operators.

Eg:	a=5			a+=2		means	a=a+2	i.e	a=5=2	a=7			
Conditional	(or	ternary)	Operator:

"?	:"	ternary	conditional	statement.	It	works	like	if-else	statement.
Exp1?	Exp2	:	Exp3	here	exp1	is	a	condition	if	this	conditions	gives	true	value	then	exp2
will	be	evaluated.	If	exp1	condition	is	false	then	exp3	will	be	evaluated.
Eg:	big	=	(a>b)	?	a	:	b
	

Increment/Decrement	operators:	++	and	–
++	will	increment	the	variables	value	by	one	and	–	will	decrement	the	value	by	one.
Eg:	a=5			a++		a=a+1	a=5+1	a=6
					a=5				a--			a=a-1	a=5-1	a=4

Other	operators:
New,	delete,	+(concatenation)etc.
	

Arrays:
An	array	is	an	object
Contains	data	elements	in	sequential	order

Elements	need	not	be	of	the	same	type
Elements	 can	 be	 primitive	 values	 or	 object	 references	 (possibly	 functions	 or	 other
arrays)
Has	dynamic	length
Index	of	array	runs	from	0	to	N-1.

Eg:	Created	via	an	Array	literal:
1.	 var	a3	=	[“7”,	1,	new	Date(),	false];

Eg:	create	an	array	via	array	object	of	N	elements,	you	can	write:
var	myArray	=	new	Array(N);

Eg:	Can	store	values	of	different	types
var	a1	=	new	Array();
a1[0]	=	27;	a1[45]	=	"Hello";

var	Car	=	new	Array(3);
Car[0]	=	"Ford";
Car[1]	=	"Toyota";
Car[2]	=	"Honda";
var	Car2	=	new	Array("Ford",	"Toyota",	"Honda");
	
Array	object	methods:
As	array	is	a	JavaScript	object,	arrays	have	several	methods	associated	with	arrays	via	which
the	array	content	can	be	manipulated.	Few	of	those	properties	are:
Join()	 –	 It	 returns	 all	 elements	 of	 the	 array	 joined	 together	 as	 a	 single	 string.	 This	 takes	 one
argument.
Reverse():	It	reverse	the	order	of	the	elements	in	an	array.

Length():JavaScript	array	length	property	returns	the	number	of	elements
in	an	array.
Push():	inserts/push	a	new	element	into	the	given	array.
pop():	removes	the	last	element	from	the	array.
Eg:var	fruits	=	["Banana",	"Orange",	"Apple",	"Mango"];
fruits.pop();
Fruits.push(“strawberry”);
	
	
	
Conditional	statements	in	JavaScript:
JavaScript	supports	conditional	statements	which	are	used	to	perform	different	actions	based	on
different	conditions.

In	JavaScript	we	have	the	following	conditional	statements:

Use	if	to	specify	a	block	of	code	to	be	executed,	if	a	specified	condition	is	true

Use	else	to	specify	a	block	of	code	to	be	executed,	if	the	same	condition	is	false

Use	else	if	to	specify	a	new	condition	to	test,	if	the	first	condition	is	false

Use	switch	to	specify	many	alternative	blocks	of	code	to	be	executed

if	statement:

The	 if	 statement	 is	 the	 fundamental	 control	 statement	 that	 allows	 JavaScript	 to
make	decisions	and	execute	statements	conditionally.
Syntax
The	syntax	for	a	basic	if	statement	is	as	follows	−

	
if(condition)
{
	block	of	code	to	be	executed	if	the	condition	is	true
}

Here	a	condition	is	evaluated.	If	the	resulting	value	is	true,	the	given	statement(s)	are	executed.	If
the	expression	is	false,	then	no	statement	would	be	not	executed.	

Eg:		<script>		
var	a=20;		
if(a>10){		
document.write("value	of	a	is	greater	than	10");		
}		
</script>

The	else	Statement:	Use	 the	else	 statement	 to	 specify	 a	 block	 of	 code	 to	 be	 executed	 if	 the
condition	is	false.	The	syntax	is	as	follows:
	

if	(condition)
{
				block	of	code	to	be	executed	if	the	condition	is	true
}
else
{	
				block	of	code	to	be	executed	if	the	condition	is	false
}

Here	JavaScript	condition	is	evaluated.	If	the	resulting	value	is	true,	the	given	statement(s)	in	the
‘if’	block,	are	executed.	If	the	expression	is	false,	then	the	given	statement(s)	in	the	else	block	are
executed.
Eg:			<script>		

var	a=20;		
if(a%2==0)
{		
			document.write("a	is	even	number");		

}		
else
{		
document.write("a	is	odd	number");		
}		
</script>

if...else	 if...	 statement:	The	 if...else	 if...	 statement	 is	 an	 advanced	 form	 of	 if…else	 that	 allows
JavaScript	to	make	a	correct	decision	out	of	several	conditions.

Syntax:	The	syntax	of	an	if-else-if	statement	is	as	follows	–

if	(condition1)	{
				block	of	code	to	be	executed	if	condition1	is	true
}	else	if	(condition2)	{
				block	of	code	to	be	executed	if	the	condition1	is	false	and	condition2	is	true
}	else	{
				block	of	code	to	be	executed	if	the	condition1	is	false	and	condition2	is	false
}

Eg:							if	(time	<	10)	{
										greeting	=	"Good	morning";
						}	else	if	(time	<	20)	{
																greeting	=	"Good	day";
						}	else	{
																greeting	=	"Good	evening";
						}

	
The	switch-case	statement:
The	JavaScript	switch	statement	 is	used	 to	execute	one	code	 from	multiple	expressions.	 It	 is
just	 like	 else	 if	 statement	 that	 we	 have	 learned	 in	 previous	 page.	 But	 it	 is	 convenient
than	if..else..if	because	it	can	be	used	with	numbers,	characters	etc.

The	break	Keyword

When	JavaScript	reaches	a	break	keyword,	it	breaks	out	of	the	switch	block.

This	will	stop	the	execution	of	more	code	and	case	testing	inside	the	block.

When	a	match	is	found,	and	the	job	is	done,	it's	time	for	a	break.	There	is	no	need
for	more	testing.

The	default	Keyword

The	default	keyword	specifies	the	code	to	run	if	there	is	no	case	match.

Syntax:

switch(expression)
{		
			case	value1:		

	code	to	be	executed;		
	break;		

			case	value2:		
	code	to	be	executed;		
	break;		

				
		
default:			

	code	to	be	executed	if	above	values	are	not	matched;		
}		
Eg:			<script>		

var	grade='B';		
var	result;		
switch(grade)
{		
case	'A':		

result="A	Grade";		
break;		

case	'B':		
result="B	Grade";		
break;		

case	'C':		
result="C	Grade";		
break;		

default:		
result="No	Grade";		

}		
document.write(result);		
</script>		

	

Loops	in	JavaScript:
While	writing	a	program,	you	may	encounter	a	situation	where	you	need	to	perform	an	action	over
and	over	again.	In	such	situations,	you	would	need	to	write	loop	statements	to	reduce	the	number
of	lines.
The	JavaScript	 loops	 are	used	 to	 iterate	 the	piece	of	 code	 using	 for,	while,	 do	while	or	 for-in
loops.	It	makes	the	code	compact.	It	is	mostly	used	in	array.

There	are	four	types	of	loops	in	JavaScript.

1.	 while	loop

2.	 do-while	loop

3.	 for	loop

4.	 for-in	loop

1)	While	loop:
The	most	basic	loop	in	JavaScript	is	the	while	loop.	The	purpose	of	a	while	loop	is	to	execute	a
statement	 or	 code	 block	 repeatedly	 as	 long	 as	 an	 expression	 is	 true.	 Once	 the	 expression
becomes	false,	the	loop	terminates.	The	syntax	is	as	follows:

while	(condition)		
{		
				code	to	be	executed		
}		

Eg:							<script>		
var	i=11;		
while	(i<=15)		
{		
document.write(i	+	"
");		
i++;		
}		
</script>

O/P:							11
12
13
14
15

2)	The	Do/While	Loop:
The	do/while	loop	is	a	variant	of	the	while	loop.	This	loop	will	execute	the	code	block	once,	before
checking	if	the	condition	is	true,	and	then	it	will	repeat	the	loop	as	long	as	the	condition	is	true.
The	loop	will	always	be	executed	at	least	once,	even	if	the	condition	is	false,	because	the	code
block	is	executed	before	the	condition	is	tested.
Syntax

do	{
				code	block	to	be	executed
}
while	(condition);

Eg:			<script>		
var	i=21;		
do{		
document.write(i	+	"
");		

i++;		
}while	(i<=25);		
</script>		

O/P:						21
22
23
24
25

3)	JavaScript	For	loop:
The	JavaScript	for	loop	iterates	the	elements	for	the	fixed	number	of	times.	It	should	be	used	if
number	of	iteration	is	known.	The	syntax	of	for	loop	is	given	below.

for	(initialization;	condition;	increment)		
{		
				code	to	be	executed		
}		

For	loop	is	having	three	parts:
Statement	1	(initialization)	is	executed	before	the	loop	(the	code	block)	starts.	You
can	initiate	many	values	in	statement	1	(separated	by	comma)	and	it	is	optional.
Statement	2	(condition)	defines	the	condition	for	running	the	loop	(the	code	block).	If
statement	2	returns	true,	the	loop	will	start	over	again,	if	it	returns	false,	the	loop	will
end.
Statement	3	(increment)	is	executed	each	time	after	the	loop	(the	code	block)	has
been	executed.	Statement	3	can	do	anything	like	negative	increment	(i--),	positive
increment	(i	=	i	+	15),	or	anything	else.

	
Eg:	<script>		

for	(i=1;	i<=5;	i++)		
{		
						document.write(i	+	"
")		
}		
</script>
O/P	:		1

2
3
4
5

4)	The	for…in	loop:
The	 for...in	 loop	 is	 used	 to	 loop	 through	 an	 object's	 properties.	 Once	 you	 understand	 how
objects	behave	in	JavaScript,	you	will	find	this	loop	very	useful.

Syntax:

for(variable-name	in	object)

{

Statement	or	block	to	execute

}

	

Functions	in	JavaScript:
A	function	is	a	group	of	reusable	code	which	can	be
called	 anywhere	 in	 your	 program.	 This	 eliminates
the	need	of	writing	the	same	code	again	and	again.
It	 helps	 programmers	 in	 writing	 modular	 codes.
Functions	 allow	 a	 programmer	 to	 divide	 a	 big
program	 into	 a	 number	 of	 small	 and	 manageable
functions.

JavaScript	supports:	1.	built-in	functions	and	2.
User-defined	functions.

	

1.Built-in	functions	in	JavaScript:
JavaScript	 supports	 various	 built-in	 functions	 or
methods.

Number	 methods-The	 Number	 object
supports	built-in	functions	like	valueOf(),

toString(),	toPrecision(),	toFixed()	etc.

parseInt()	function:	The	parseInt()	function	converts
a	string	argument	and	returns	an	integer	of	the
specified	radix	(the	base	in	mathematical	numeral
systems).
Eg:	var	p	=	parseInt(prompt(“enter	a	value”));
	

parseFloat():The	parseFloat()	function	parses	an
argument	and	returns	a	floating	point	number.

	

String	methods-	charAt(),	concat(),	 indexOf(),
length()	etc	are	the	functions	in	strings.

concat():Combines	 the	 text	 of	 two	 strings	 and
returns	a	new	string.
indexOf():Returns	the	index	within	the	calling	String
object	of	the	first	occurrence	of	the	specified	value,
or	-1	if	not	found.
charAt():	Returns	the	character	at	the	specified
index.
	

Boolean	 methods-	 valueOf(),	 toSource()	 are
few	of	these.

valueOf():Returns	the	primitive	value	of	the	Boolean
object.
toSource():Returns	a	string	containing	the	source
of	the	Boolean	object;	you	can	use	this	string	to
create	an	equivalent	object.
	

Array	 methods-	 push(),	 pop(),	 reverse(),
concat(),	sort()	etc	are	examples.

concat():Returns	 a	 new	 array	 comprised	 of	 this
array	joined	with	other	array(s)	and/or	value(s).

https://www.tutorialspoint.com/javascript/string_indexof.htm
https://www.tutorialspoint.com/javascript/string_charat.htm
https://www.tutorialspoint.com/javascript/boolean_valueof.htm
https://www.tutorialspoint.com/javascript/boolean_tosource.htm
https://www.tutorialspoint.com/javascript/array_concat.htm

join():Joins	all	elements	of	an	array	into	a	string.
push():Adds	one	or	more	elements	to	the	end	of
an	array	and	returns	the	new	length	of	the	array.
pop():Removes	the	last	element	from	an	array
and	returns	that	element.
reverse():Reverses	the	order	of	the	elements	of
an	array	--	the	first	becomes	the	last,	and	the	last
becomes	the	first.

	

2.	 User-defined	 functions:	 JavaScript	 also
allows	the	users	to	create	their	functions.

Function	declaration	&	definition:
Before	we	use	a	function,	we	need	to	define	it.	The
most	common	way	to	define	a	function	in	JavaScript
is	 by	 using	 the	 function	 keyword,	 followed	 by	 a
unique	 function	 name,	 a	 list	 of	 parameters	 (that
might	be	empty),	and	a	statement	block	surrounded
by	curly	braces.	A	 function	can	 return	value	of	any
type	using	the	keyword	"return".
Syntax:	function	function-Name(parameters)

						{
														code	to	be	executed
												}

Eg:							function	myFunction(a,	b)

https://www.tutorialspoint.com/javascript/array_join.htm
https://www.tutorialspoint.com/javascript/array_push.htm
https://www.tutorialspoint.com/javascript/array_pop.htm
https://www.tutorialspoint.com/javascript/array_reverse.htm

{
										return	a	*	b;
						}
Calling	a	Function
Declared	 functions	 are	 not	 executed	 immediately.
They	will	be	executed	later,	when	they	are	invoked
(called	upon).To	invoke	a	function	somewhere	later
in	 the	 script,	 you	 would	 simply	 need	 to	 write	 the
name	of	that	function	with	parameters	if	any.	

How	to	invoke	a	function:
Eg:	we	need	to	use	html	form	objects	to	invoke	a
function	by	a	click	action	on	a	button.

<html>
<head>			
		<script	type="text/javascript">
									function	sayHello()
									{
												document.write	("Hello	there!");
									}
		</script>
						
</head>
<body>
						<p>Click	the	following	button	to	call	the	
function</p>
						

<form>
									<input	type="button"	onclick="sayHello()"
value="Say	Hello">
</form>
</body>
</html>
	

Advantage	of	JavaScript	function:
There	 are	 mainly	 two	 advantages	 of	 JavaScript
functions.

1.	 Code	 reusability:	 We	 can	 call	 a	 function
several	times	so	it	save	coding.

2.	 Less	 coding:	 It	 makes	 our	 program
compact.	We	don’t	need	 to	write	many	 lines
of	code	each	time	to	perform	a	common	task.

Function	Parameters
There	is	a	facility	to	pass	different	parameters	while
calling	a	function.	These	passed	parameters	can	be
captured	 inside	 the	 function	 and	 any	manipulation
can	be	done	over	those	parameters.	A	function	can
take	multiple	parameters	separated	by	comma.	We
can	 call	 function	 by	 passing	 arguments.	 Let’s	 see
the	example	of	function	that	has	one	argument.

<script>		
function	getcube(number)

{		
alert	(number*number*number);		

}		
</script>		
<form>		
<input	type="button"	value="click"	onclick="getcube(4)"
</form>		

	

Function	with	Return	Value:	We	can	call	 function
that	 returns	 a	 value	 and	 use	 it	 in	 our	 program.	 A
JavaScript	 function	 can	 have	 an
optional	 return	 statement.	 This	 is	 required	 if	 you
want	 to	 return	 a	 value	 from	 a	 function.	 This
statement	should	be	the	last	statement	in	a	function.
Let’s	see	the	example	of	function	that	returns	value.

<script>		
function	getInfo(){		
return	"hello	javatpoint!	How	r	u?";		
}		
</script>		
<script>		
document.write(getInfo());		
</script>		
	
	

Objects	in	JavaScript:
In	JavaScript,	an	object	is	defined	as

an	"unordered	collection	of	properties	each
of	which	contains	a	primitive	value,	object,
or	function	".
The	objects	are	described	by	properties	and
their	behavior	is	defined	by	methods.	An
object	is	collection	of	these	properties	and
methods	which	can	be	defined	and	altered	and
retrieved	by	the	user.
JavaScript	objects	are	dynamic	in	nature,
properties	and	methods	can	be	added	and
deleted	by	the	user.	Each	property	or	method
is	identified	by	the	name	that	is	mapped	to
a	value.

	

The	Browser	Object:
The	 Browser	 Object	 Model	 (BOM)	 is	 actually
the	central	part	of	using	JavaScript	on	the	Web
BOM	 -	 set	 of	 objects	 that	 comprise	 various
elements	 of	 a	 Browser.	 The	 browser	 object
model	(BOM)	is	a	hierarchy	of	browser	objects
that	 are	 used	 to	 manipulate	 methods	 and

properties	 associated	 with	 the	 Web	 browser
itself.
Web	browser	controlled	through	browser	object
model	 (BOM)	 whereas	 web	 page	 can	 be
controlled	 through	 document	 object	 Model
(DOM).
Objects	 that	 make	 up	 the	 BOM	 include	 the
window	object,	navigator	object,	screen	object,
history,	 location	 object,	 and	 the	 document
object.	 The	 Document	 Object	 consists	 of
objects	 that	 are	 used	 to	 manipulate	 methods
and	 properties	 of	 the	 document	 or	Web	 page
loaded	in	the	browser	window.

The	“window”	Object	represents	the	browser,	and	it
is	the	default	object.

Eg:								document.write("a	test	message");
alert	("Hello");

has	the	same	meaning	as	writing	as	follows:
window.document.write("a	test	message");
window.alert("Hello");

	

Some	of	the	methods	of	the	window	object	are:
alert(),	 prompt(),	 confirm():	 to	 read	 input	 and
display	output
open():	Create	a	new	window

close():	close	the	current	window
setTimeout(expression,	 time)	 :	 Evaluate
"expression"	after	"time"	(in	millisecond).
	

Some	 of	 the	 properties	 of	 the	 window	 object
are:

location:	 Represents	 the	 URL	 loaded	 into	 the
window
navigator:	 Contains	 info	 about	 the	 browser	 (Its
version,	OS,	etc.)
document:	Holds	the	real	content	of	the	page
screen:	 Contains	 info	 about	 the	 client's	 display
screen
history:	Contains	the	visited	URLs	in	the	browser
window
	

Eg:	<!--	Opening	a	window	with	specified
characteristics	-->
<html>
<head>
<script	type="text/JavaScript">
var	myWin;
	

function	open_close_win	()
{

if	(!myWin)																			//	if	not	yet	opened,
open	a	new	window

myWin	=	window.open	(

												"http://www.w3schools.com",							//
Document	URL

												"my_new_window",	//	Window	Name
												"toolbar=yes,location=yes,directories=no,"

+
												"status=no,menubar=yes,scrollbars=yes,"

+
												“resizable=no,copyhistory=yes,width=400,height=400"
);
else
{																			//	Otherwise	close	the	opened

window
myWin.close();
myWin	=	null;
}

}
</script>
</head>
<body>
<form>
<input	type="button"	value="Open/close	Window"
onclick="open_close_win()">
</form>
</body>
</html>
	
	

Introduction	to	browser	events

Events	 are	 actions	 that	 can	 be	 detected	 by
JavaScript,	 and	 the	 event	 object	 gives	 information
about	the	event	that	has	occurred.

An	 event	 occurs	 when	 something	 happens	 in	 a
browser	 window.	 The	 kinds	 of	 events	 that	 might
occur	are	due	to:

A	document	loading
The	user	clicking	a	mouse	button
The	browser	screen	changing	size

Events	 are	 normally	 used	 in	 combination	 with
functions,	 and	 the	 function	 will	 not	 be	 executed
before	 the	 event	 occurs!	 JavaScript	 event	 handlers
are	divided	into	two	types:

Interactive	 event	 handlers	 -	 depend	 on	 user
interaction	with	the	HTML	page;	ex.	clicking	a
button
Non-Interactive	 event	 handlers	 -	 do	 not	 need
user	interaction;	ex.	on	load

Events	 are	 JavaScript	 code	 that	 are	 not	 added
inside	the	<script>	tags,	but	rather,	inside	the	html
tags,	 that	 execute	 JavaScript	 when	 something
happens,	 such	 as	 pressing	 a	 button,	 moving	 your
mouse	over	a	link,	submitting	a	form	etc.
The	basic	syntax	of	these	event	handlers	is:

name_of_handler="JavaScript	code	here"

Event	Handlers:
To	react	on	events	we	can	assign	a	handler	–	a	function
that	 runs	 in	 case	 of	 an	 event.	Handlers	 is	 a	way	 to	 run
JavaScript	code	in	case	of	user	actions.	There	are	several
ways	to	assign	a	handler.	

onclick: Use	 this	 to	 invoke	 JavaScript	 upon	 clicking	 (a
link,	or	form	boxes)

onload: Use	this	to	invoke	JavaScript	after	the	page	or	an
image	has	finished	loading.

onunload: Use	this	to	invoke	JavaScript	right	after	someone
leaves	this	page.

onmouseover: Use	this	to	invoke	JavaScript	if	the	mouse	passesby	some	link

onmouseout: Use	 this	 to	 invoke	 JavaScript	 if	 the	mouse	goes
pass	some	link

onmousedownThe	mouse	button	was	pressed	on	the	element

onmouseup The	mouse	button	was	released	on	the	element.

onkeydown A	key	was	pressed	when	an	element	has	focus

onkeypress A	keystroke	was	received	by	the	element

onkeyup A	key	was	released	when	the	element	has	focus
	

onclick	Event	Type:
This	is	the	most	frequently	used	event	type	which	occurs

when	 a	 user	 clicks	 the	 left	 button	 of	 his	 mouse.	 For
instance,	 to	 assign	 a	 click	 handler	 for	 an	 input,	we	 can
use	onclick.	On	mouse	click,	 the	code	 inside	onclick	 runs.	You	 can
put	your	validation,	warning	etc.,	against	this	event	type.
Ex:	<html>
			<head>
						<script	type="text/javascript">
													function	sayHello()	{
															alert("Hello	World")
												}
										</script>
									</head>
						<body>
						<p>Click	the	following	button	and	see	result</p>
						
						<form>
									<input	type="button"	onclick="sayHello()"	value="Say
Hello"	/>
						</form>
						</body>
</html>

Onmousedown	and	onmouseup	events:

The	onmousedown,	onmouseup,	and	onclick	events	are	all	parts	of	a
mouse-click.	First	when	a	mouse-button	is	clicked,	the	onmousedown
event	is	triggered,	then,	when	the	mouse-button	is	released,	the
onmouseup	event	is	triggered,	finally,	when	the	mouse-click	is
completed,	the	onclick	event	is	triggered.

<!DOCTYPE	html>
<html>
<head>
<script>

function	lighton()	{
				document.getElementById('myimage').src	=	"bulbon.gif";
}
function	lightoff()	{
				document.getElementById('myimage').src	=	"bulboff.gif";
}
</script>
</head>
<body>
<img	id="myimage"	onmousedown="lighton()"
onmouseup="lightoff()"	src="bulboff.gif"	width="100"	height="180"
/>
<p>Click	mouse	and	hold	down!</p>
</body>
</html>
The	onload	and	onunload	Events:

The	onload	and	onunload	events	are	triggered	when	the	user	enters	or
leaves	the	page.	The	onload	event	can	be	used	to	check	the	visitor's
browser	type	and	browser	version,	and	load	the	proper	version	of	the
web	page	based	on	the	information.	The	onload	and	onunload	events
can	be	used	to	deal	with	cookies.

Ex:	<!DOCTYPE	html>
<html>
<head>
	

<script>
function	mymessage()	{
				alert("This	message	was	triggered	from	the	onload	event");
}
</script>
</head>
	

<body	onload="mymessage()">

</body>
	

</html>
	

Form	and	form	object	in	JavaScript:
	
Forms:

A	web	form,	also	called	an	HTML	form,	is	an	online	page	that	allows	for	user	input.	It
is	an	interactive	page	that	mimics	a	paper	document	or	form,	where	users	fill	out
particular	fields.

HTML	Forms	are	required	to	collect	different	kinds	of	user	inputs,	such	as	contact
details	like	name,	email	address,	phone	numbers,	or	details	like	credit	card
information,	etc.

Forms	contain	special	elements	called	controls	like	input	box,	check	boxes,	radio-
buttons,	submit	buttons,	etc.

Users	generally	complete	a	form	by	modifying	its	controls	e.g.	entering	text,
selecting	items,	etc.	and	submitting	this	form	to	a	web	server	for	processing.

The	<form>…	…	</form>	tags	are	used	to	create	an	HTML	form.

JavaScript	is	widely	used	for	form	validation	and	to	alter	the	default	behavior	of	standard	form
controls.

Eg	:	A	simple	program	to	create	a	form	with	text	boxes,	radio	buttons	and	submit	button.
	
<body>
<FORM	>
			<P>							First	name:	<INPUT	type="text"	name="firstname">

Last	name:	<INPUT	type="text"	name="lastname">

Email:	<INPUT	type="text"	name="email">

<INPUT	type="radio"	name="gender"	value="Male">	Male

<INPUT	type="radio"	name="gender"	value="Female">	Female

<BUTTN	name="submit"	value="submit"	type="submit">
Send	</BUTTON>
<BUTTON	name="reset"	type="reset">
Reset</BUTTON>

				</P>
</FORM>
</body>
The	Form	object:

The	Utility	 of	 JavaScript	 in	 forms	 is	 to	 validate	 the	data	 (data	validation)	before	 it	 gets
sent	to	server	script	for	processing	of	data.		Before	submitting	the	data	to	the	server	data	should
be	validated	 i.e.,	 it	should	be	checked	 for	 the	correctness	of	 the	data.	Once	 the	 form	has	been
validated,	the	same	script	can	be	used	to	forward	the	data	on	to	the	server.	It	is	used	to	check	for
empty	 form	fields,	 improperly	 filled	 forms,	verify	 the	correct	 format	of	email	address,	credit	card
no,	zipcode,	telephone	number	etc.

https://www.tutorialrepublic.com/html-reference/html-form-tag.php

JavaScript	can	also	be	used	to	submit	the	form	on	behalf	of	the	user,	using	form	object	and	its
methods,	 properties.	 It	 enables	 users	 to	 handle	multiple	 forms,	 call	 function	 to	 handle	 events,
respond	to	various	form	related	events	etc.

The	"form"	object	belongs	to	the	"document"	object.
Contains	other	objects	that	represent	the	form	elements	(text	input	field,	radio	buttons)
This	corresponds	to	an	HTML	input	form	constructed	with	the	FORM	tag.
A	form	can	be	submitted	by	calling	the	JavaScript	submit	method	or	clicking	the	form
submit	button.

Form	Object	Methods
reset()	-	Used	to	reset	the	form	elements	to	their	default	values.

submit()	-	Submits	the	form	as	though	the	submit	button	were	pressed	by	the	user.

Form	Object	Properties
action	-	This	specifies	the	URL	and	CGI	script	file	name	the	form	is	to	be	submitted
to.	It	allows	reading	or	changing	the	ACTION	attribute	of	the	HTML	FORM	tag.

length	-	The	number	of	fields	in	the	elements	array.	I.E.	the	length	of	the	elements
array.

method	-	This	is	a	read	or	write	string.	It	has	the	value	"GET"	or	"POST".

name	-	The	form	name.	Corresponds	to	the	FORM	Name	attribute.

target	-	The	name	of	the	frame	or	window	the	form	submission	response	is	sent	to
by	the	server.	Corresponds	to	the	FORM	TARGET	attribute.

Form	Events
onReset

onSubmit

Form	elements	can	be	accessed	as	:	document.forms[idx]	or
document.forms[form_name]	or	document.form_name	or
document.getElementById(form_id)

	
	

<!–	Validate	the	range	of	input	in	a	text	field	-->
<html><head>
<script	type="text/javascript">
function	validate()	{

var	x	=	document.myForm;
var	txt	=	x.myInput.value;

if	(txt	>=	1	&&	txt	<=	5)
return	true;

else	{
alert("Must	be	between	1	and	5");
return	false;

}

}
</script>
</head>
<body>
<form	name="myForm"	action="tryjs_submitpage.htm"
onsubmit="return	validate()"
>
Enter	a	value	(1-5):
<input	type="text"	name="myInput"	size="20">
<input	type="submit"	value="Submit">
</form></body></html>
	

	

UNIT-IV
PHP

	

PHP	 is	 a	 recursive	 acronym	 for	 "PHP:	 Hypertext
Preprocessor".
PHP	 is	 a	 server	 side	 scripting	 language	 that	 is	 embedded	 in
HTML.	 It	 is	 used	 to	 manage	 dynamic	 content,	 databases,
session	tracking,	even	build	entire	e-commerce	sites.
It	 is	 integrated	with	a	number	of	popular	databases,	 including
MySQL,	PostgreSQL,	Oracle,	Sybase,	Informix,	and	Microsoft
SQL	Server.
PHP	 is	 pleasingly	 zippy	 in	 its	 execution,	 especially	 when
compiled	as	an	Apache	module	on	the	Unix	side.	The	MySQL
server,	once	started,	executes	even	very	complex	queries	with
huge	result	sets	in	record-setting	time.
PHP	supports	a	large	number	of	major	protocols	such	as	POP3,
IMAP,	and	LDAP.	PHP4	added	support	for	Java	and	distributed
object	 architectures	 (COM	 and	 CORBA),	 making	 n-tier
development	a	possibility	for	the	first	time.

Common	uses	of	PHP:

PHP	performs	system	functions,	i.e.	from	files	on	a	system	it
can	create,	open,	read,	write,	and	close	them.
PHP	can	handle	forms,	i.e.	gather	data	from	files,	save	data	to	a
file,	through	email	you	can	send	data,	return	data	to	the	user.
You	add,	delete,	modify	elements	within	your	database	through
PHP.
Access	cookies	variables	and	set	cookies.
Using	PHP,	you	can	restrict	users	to	access	some	pages	of	your
website.
It	can	encrypt	data.

	
	

Basic	PHP	Syntax
A	PHP	script	can	be	placed	anywhere	in	the	document.
A	PHP	script	starts	with	<?php	and	ends	with	?>:

<?php
//	PHP	code	goes	here
?>

The	default	file	extension	for	PHP	files	is	".php".
A	PHP	file	normally	contains	HTML	tags,	and	some	PHP	scripting
code.
Example

<!DOCTYPE	html>
<html>
<body>

<h1>My	first	PHP	page</h1>

<?php
echo	"Hello	World!";
?>

</body>
</html>

PHP	5	echo	and	print	Statements
In	PHP	there	are	two	basic	ways	to	get	output:	echo	and	print.
echo	and	print	are	more	or	less	the	same.	They	are	both	used	to
output	data	to	the	screen.
The	differences	are	small:	echo	has	no	return	value
while	print	has	a	return	value	of	1	so	it	can	be	used	in
expressions.	echo	can	take	multiple	parameters	(although	such
usage	is	rare)	while	print	can	take	one	argument.	echo	is
marginally	faster	than	print.

	

The	PHP	echo	Statement
The	echo	statement	can	be	used	with	or	without	parentheses
like	echo	or	echo()	to	display	text.
The	following	example	shows	how	to	output	text	with
the	echo	command	(notice	that	the	text	can	contain	HTML
markup):

Example
<?php
echo	"<h2>PHP	is	Fun!</h2>";
echo	"Hello	world!
";
echo	"I'm	about	to	learn	PHP!
";
echo	"This	",	"string	",	"was	",	"made	",	"with	multiple
parameters.";
?>

	

Example
<?php
$txt1	=	"Learn	PHP";
$txt2	=	"W3Schools.com";
$x	=	5;
$y	=	4;

echo	"<h2>"	.	$txt1	.	"</h2>";
echo	"Study	PHP	at	"	.	$txt2	.	"
";
echo	$x	+	$y;
?>

	

The	PHP	print	Statement
The	print	statement	can	be	used	with	or	without	parentheses	like
print	or	print()	to	display	text.
The	following	example	shows	how	to	output	text	with
the	print	command	(notice	that	the	text	can	contain	HTML	markup):
Example

<?php
print	"<h2>PHP	is	Fun!</h2>";
print	"Hello	world!
";
print	"I'm	about	to	learn	PHP!";
?>

Display	Variables:	The	following	example	shows	how	to	output	text
and	variables	with	the	print	statement:
Example

<?php
$txt1	=	"Learn	PHP";
$txt2	=	"W3Schools.com";
$x	=	5;
$y	=	4;

print	"<h2>"	.	$txt1	.	"</h2>";
print	"Study	PHP	at	"	.	$txt2	.	"
";
print	$x	+	$y;
?>

	

PHP	5	Form	Handling:
The	dynamic	websites	provide	the	functionalities	that	can	use	to	store,
update,	retrieve,	and	delete	the	data	in	a	database.	Form	is	a

Document	that	containing	black	fields,	that	the	user	can	fill	the	data	or
user	can	select	the	data.	Forms	are	used	to	collect	the	data	and
casually	the	data	will	store	in	the	data	base.	The	PHP	super-global
$_GET	and	$_POST	are	used	to	collect	form-data.
PHP	-	A	Simple	HTML	Form
The	example	below	displays	a	simple	HTML	form	with	two	input
fields	and	a	submit	button:
Example

<html>
<body>

<form	action="welcome.php"	method="post">
Name:	<input	type="text"	name="name">

E-mail:	<input	type="text"	name="email">

<input	type="submit">
</form>

</body>
</html>

	

When	the	user	fills	out	the	form	above	and	clicks	the	submit	button,
the	form	data	is	sent	for	processing	to	a	PHP	file	named
"welcome.php".	The	form	data	is	sent	with	the	HTTP	POST	method.
To	display	the	submitted	data	you	could	simply	echo	all	the	variables.
The	"welcome.php"	looks	like	this:

<html>
<body>

Welcome	<?php	echo	$_POST["name"];	?>

Your	email	address	is:	<?php	echo	$_POST["email"];	?>

</body>
</html>

The	output	could	be	something	like	this:
Welcome	John
Your	email	address	is	john.doe@example.com

The	same	result	could	also	be	achieved	using	the	HTTP	GET	method:
Example

<html>
<body>

<form	action="welcome_get.php"	method="get">
Name:	<input	type="text"	name="name">

E-mail:	<input	type="text"	name="email">

<input	type="submit">
</form>

</body>
</html>
Run	example	»
and	"welcome_get.php"	looks	like	this:
<html>
<body>

Welcome	<?php	echo	$_GET["name"];	?>

Your	email	address	is:	<?php	echo	$_GET["email"];	?>

</body>
</html>

	

The	code	above	is	quite	simple.	However,	the	most	important	thing	is
missing.	You	need	to	validate	form	data	to	protect	your	script	from
malicious	code.
	

GET:
Information	 sent	 from	 a	 form	 with	 the	 GET	 method	 is	 visible	 to
everyone.	GET	also	has	limits	on	the	amount	of	information	to	send.

https://www.w3schools.com/php/showphp.asp?filename=demo_form_get

The	limitation	is	about	2000	characters.	GET	may	be	used	for	sending
non-sensitive	data.	 	However,	because	 the	variables	 are	displayed	 in
the	URL,	it	is	possible	to	bookmark	the	page.	
	

POST:
Information	 sent	 from	 a	 form	with	 the	 POST	method	 is	 invisible	 to
others	 and	 has	 no	 limits	 on	 the	 amount	 of	 information	 to	 send.
Developers	prefer	POST	for	sending	form	data.	However,	because	the
variables	are	not	displayed	in	the	URL,	it	is	not	possible	to	bookmark
the	page.
	
	

GET	vs.	POST
Both	GET	and	POST	create	an	array	(e.g.	array(key	=>	value,
key2	=>	value2,	key3	=>	value3,	...)).	This	array	holds
key/value	pairs,	where	keys	are	the	names	of	the	form	controls
and	values	are	the	input	data	from	the	user.
Both	GET	and	POST	are	treated	as	$_GET	and	$_POST.	These
are	superglobals,	which	means	that	they	are	always	accessible,
regardless	of	scope	-	and	you	can	access	them	from	any
function,	class	or	file	without	having	to	do	anything	special.
$_GET	is	an	array	of	variables	passed	to	the	current	script	via
the	URL	parameters.
$_POST	is	an	array	of	variables	passed	to	the	current	script	via
the	HTTP	POST	method.

	

Form	Validation:
Validation	means	check	the	input	submitted	by	the	user.	There
are	two	types	of	validation	are	available	in	PHP.	They	are	as
follows	−
Client-Side	Validation	−	Validation	is	performed	on	the	client
machine	web	browsers.
Server	Side	Validation	−	After	submitted	by	data,	The	data	has
sent	to	a	server	and	perform	validation	checks	in	server

machine.
Some	of	Validation	rules	for	field

Validate	Form	Data	With	PHP
The	first	thing	we	will	do	is	to	pass	all	variables	through	PHP's
htmlspecialchars()	function.
When	we	use	the	htmlspecialchars()	function;	then	if	a	user	tries	to	submit
the	following	in	a	text	field:
<script>location.href('http://www.hacked.com')</script>
	
	

PHP	Form	Validation	Example
*	required	field
Top	of	Form
Name:		*	
E-mail:		*	
Website:		
Comment:		
Gender:	Female	Male	Other	*	

	

Bottom	of	Form
	

The	validation	rules	for	the	form	above	are	as	follows:
Field Validation	Rules

Name Required.	+	Must	only	contain	letters	and	whitespace

E-mail Required.	+	Must	contain	a	valid	email	address	(with
@	and	.)

Website Optional.	If	present,	it	must	contain	a	valid	URL

Comment Optional.	Multi-line	input	field	(textarea)

Gender Required.	Must	select	one
	

The	HTML	code	of	the	form	looks	like	this:

<form	method="post"	action="<?
php	echo	htmlspecialchars($_SERVER["PHP_SELF"]);?>">

	

When	the	form	is	submitted,	the	form	data	is	sent	with
method="post".
	

What	is	the	$_SERVER["PHP_SELF"]	variable?

The	$_SERVER["PHP_SELF"]	is	a	super	global	variable	that	returns
the	filename	of	the	currently	executing	script.
So,	the	$_SERVER["PHP_SELF"]	sends	the	submitted	form	data	to
the	page	itself,	instead	of	jumping	to	a	different	page.	This	way,	the
user	will	get	error	messages	on	the	same	page	as	the	form.
	

What	is	the	htmlspecialchars()	function?
The	htmlspecialchars()	function	converts	special	characters	to	HTML
entities.	This	means	that	it	will	replace	HTML	characters	like	<	and	>
with	<	and	>.	This	prevents	attackers	from	exploiting	the	code
by	injecting	HTML	or	Javascript	code	(Cross-site	Scripting	attacks)	in
forms.
	

Validate	Form	Data	With	PHP
The	first	thing	we	will	do	is	to	pass	all	variables	through	PHP's
htmlspecialchars()	function.
When	we	use	the	htmlspecialchars()	function;	then	if	a	user
tries	to	submit	the	following	in	a	text	field:
<script>location.href('http://www.hacked.com')</script>
-	this	would	not	be	executed,	because	it	would	be	saved	as
HTML	escaped	code,	like	this:

<script>location.href('http://www.hacked.com')</script>
The	code	is	now	safe	to	be	displayed	on	a	page	or	inside	an	e-mail.

We	will	also	do	two	more	things	when	the	user	submits	the
form:
Strip	unnecessary	characters	(extra	space,	tab,	newline)	from

the	user	input	data	(with	the	PHP	trim()	function)
Remove	backslashes	(\)	from	the	user	input	data	(with	the	PHP
stripslashes()	function)
The	next	step	is	to	create	a	function	that	will	do	all	the
checking	for	us	(which	is	much	more	convenient	than	writing
the	same	code	over	and	over	again).
We	will	name	the	function	test_input().
Now,	we	can	check	each	$_POST	variable	with	the	test_input()
function,	and	the	script	looks	like	this:

Example
<?php
//	define	variables	and	set	to	empty	values
$name	=	$email	=	$gender	=	$comment	=	$website	=	"";

if	($_SERVER["REQUEST_METHOD"]	==	"POST")	{
		$name	=	test_input($_POST["name"]);
		$email	=	test_input($_POST["email"]);
		$website	=	test_input($_POST["website"]);
		$comment	=	test_input($_POST["comment"]);
		$gender	=	test_input($_POST["gender"]);
}

function	test_input($data)	{
		$data	=	trim($data);
		$data	=	stripslashes($data);
		$data	=	htmlspecialchars($data);
		return	$data;
}
?>

	
URL	and	E-Mail	Validation	in	PHP:
	
You	can	validate	data	in	different	ways.	We	have	used	PHP	functions	and	regular
expressions	to	create	the	validation	rules.	

Email	address	validation
We	 need	 to	 check	 if	 the	 email	 field	 is	 empty.	 If	 it	 is	 empty,	 an	 error
message	 will	 be	 displayed.	 This	 message	 will	 be	 stored	 in	 the	 variable
$email_error.	We	have	used	a	PHP	function	called	filter_var()	to	validate
the	email	address	entered	by	the	user.

The	easiest	and	safest	way	to	check	whether	an	email	address	is	well-formed	is
to	use	PHP's	filter_var()	function.

In	the	code	below,	if	the	e-mail	address	is	not	well-formed,	then	store	an	error
message:

$email	=	test_input($_POST["email"]);
if	(!filter_var($email,	FILTER_VALIDATE_EMAIL))
{
		$emailErr	=	"Invalid	email	format";	
}
	

Website	URL	validation
The	 error	 message	 for	 the	 URL	 is	 stored	 in	 the	 variable	 $url_error.	 A
regular	expression	validates	the	website	URL	entered	through	the	contact
form.	Examine	the	following	code	to	understand	how	we	have	performed
the	URL	validation	using	PHP.

The	code	below	shows	a	way	to	check	if	a	URL	address	syntax	is	valid	(this
regular	expression	also	allows	dashes	in	the	URL).	If	the	URL	address	syntax	is
not	valid,	then	store	an	error	message:

$website	=	test_input($_POST["website"]);
if	(!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-9+&@#\/%?
=~_|!:,.;]*[-a-z0-9+&@#\/%=~_|]/i",$website))	{
		$websiteErr	=	"Invalid	URL";	
}

	

	

PHP	Installation	using	Web	Host:

To	start	using	PHP,	you	can:

Find	a	web	host	with	PHP	and	MySQL	support

Install	a	web	server	on	your	own	PC,	and	then	install	PHP
and	MySQL

Use	a	Web	Host	with	PHP	Support:

If	 your	 server	 has	 activated	 support	 for	 PHP	you	 do	 not	 need	 to	 do
anything.	 Just	 create	 some	 .php	 files,	 place	 them	 in	 your	 web
directory,	 and	 the	 server	will	 automatically	parse	 them	 for	you.	You
do	 not	 need	 to	 compile	 anything	 or	 install	 any	 extra	 tools.	 Because
PHP	 is	 free,	 most	 web	 hosts	 offer	 PHP	 support.	 However,	 if	 your
server	does	not	support	PHP,	you	must:

install	a	database,	such	as	MySQL

install	a	web	server

install	PHP

Step	1:	Install	MySQL

Install	the	MySQL	database	server	on	your	PC.	We	will	do	this
using	the	'MSI'	one-click	installer	for	Windows.	Go
to	http://dev.mysql.com/downloads/	and	download	the	'MySQL
Installer	for	Windows'.

Run	the	installation.	Click...

Install	MySQL	products

Accept	the	license,	Allow	the	version	check	(optional)

At	'Choose	a	Setup	Type'	accept	the	"Developer	Default"
and	click	Next

A	number	of	downloads	of	required	software	may	be
identified.	Click	Execute	and	follow	onscreen	instructions	to
install	them.

At	'Installation	progress'	screen,	hit	Execute	-	the	MySQL

http://dev.mysql.com/downloads/

software	will	be	installed.
At	'Configuration	overview'	hit	Next	to	go	to	the	basic
configuration	screen.

Accept	all	the	defaults	on	the	'MySQL	Server	Configuration'
and	hit	Next.

On	the	password	screen,	supply	a	password	for	the	'root'
(main	administrator)	user.

On	the	Service	details	page,	accept	the	defaults	and	hit	Next
and	then	Next	a	couple	more	times	for	the	configuration
progress.

Click	Finish.

MySQL	Workbench	will	open.	Under	Server	Administration
(right	hand	column,	double	click	'Local	MySQL56'	(or
whatever	you	called	it).	A	box	should	pop	up	asking	for	the
root	password.	Enter	the	password	you	supplied.

The	server	management	screen	should	appear.	You	don't	have
to	worry	too	much	about	this.	It	just	shows	the	install	is
working.

Step	2:	Install	Apache

Install	the	Apache	web	server	on	your	PC.	Go
to	http://www.apachelounge.com/download/.	Scroll	down	the
page	until	you	find	the	download	for	the	'Apache	2.4	win32
binaries'	and	download.	You	need	to	be	careful	that	the	module
dll	in	PHP	matches	the	version	of	Apache	you	install.	Apache
won't	load	otherwise.

Unzip	the	file	into	C:\.	You	should	end	up	with	a	directory
'Apache24'	(or	whatever	the	latest	version	is).

Find	Start	>	All	programs	>	Accessories	>	Command
Prompt......	BUT,	right	click,	and	select	'Run	as	administrator'.

http://www.apachelounge.com/download/

Enter	the	following	commands

			cd	\Apache24\bin

			httpd	-k	install

			httpd	-k	start

...you	may	well	get	a	warning	about	the	server	name.	Don't	worry
about	it.	Don't	close	this	window,	you	will	need	it	again	in	a	minute.

To	test	it	worked	type	'http://localhost'	into	your	browser.	You
should	get	a

screen	up	to	the	effect	that	Apache	is	installed	and	working.

Step	3:	Install	PHP

Now	install	the	PHP	scripting	language	on	your	PC.	Go
to	http://www.php.net/download.	In	the	current	stable	release
section	click	on	link	for	Windows	5.x.x	binaries	and	source.
Scroll	down	to	the	newest	'Zip'	for	VC14	x86	Thread	Safe	
PHP	(again,	the	newest	versions	of	PHP	didn't	have	this	but	it
shouldn't	matter)	and	download.	*Don't*	be	tempted	to	use	the
Microsoft	Installer	version;	it	won't	work.

Open	the	zip	file	and	extract	to	C:\PHP\

In	a	console	window,	type	php	-v	to	see	if	it	worked.	(You	may
need	to	set	up	your	PATH.	Alos,	if	you	get	weired	error
messages,	or	no	error	messages	at	all,	read	the	bit	on	the	left
of	http://windows.php.net/	where	it	talks	about	installing	"C++
Redistributable	for	Visual	Studio")

Step	4:	Configure	Apache	and	PHP

You	now	need	to	edit	Apache's	httpd.conf	file.	In	the	file	explorer
navigate	to	C:\Apache24\conf\httpd.conf.	Open	it	in	Notepad.	At	the
end	of	this	file	(or	wherever	you	like	if	you	want	to	be	more

http://www.php.net/download
http://windows.php.net/

organized)	add	the	following	lines:

			LoadModule	php5_module	"C:/PHP/php5apache2_4.dll"

			AddHandler	application/x-httpd-php	.php

			PHPIniDir	C:/PHP

The	version	of	the	module	file	matters	(2_4	in	this	case).	It	MUST
match	the	Apache	version	installed.

In	the	same	file.	Search	for	the	line	starting	DirectoryIndex.	Change
it	as	follows

			DirectoryIndex	index.php	index.html

Now,	navigate	to	C:\PHP,	and	copy	php.ini-development	to	php.ini.
Edit	this	file,	find	the	following	lines	and	modify	them	as	follows	(all
should	exist	already):

			memory_limit	=	256M
			post_max_size	=	128M

			upload_max_filesize	=	128M

You	need	to	specify	the	extensions	required	for	Moodle.	Find	the
'Dynamic	Extensions'	section	and	change	the	following	lines
(uncomment	and	add	the	correct	path):

			extension=c:/php/ext/php_curl.dll

			extension=c:/php/ext/php_gd2.dll

			extension=c:/php/ext/php_intl.dll

			extension=c:/php/ext/php_mbstring.dll

			extension=c:/php/ext/php_mysqli.dll

			extension=c:/php/ext/php_openssl.dll

			extension=c:/php/ext/php_soap.dll

			extension=c:/php/ext/php_xmlrpc.dll

(these	are	a	minimum.	You	may	need	others	-	e.g.	LDAP	-	for	specific
functions)	...and	save.

Back	in	the	'cmd'	window	for	Apache,	you	need	to	restart	it	to	load
your	changes...

			httpd	-k	restart

Step	5:	Test	your	install

Navigate	to	C:\Apache24\htdocs	and	create	a	file	called	'test.php'.	I
had	to	change	a	file	explorer	setting	to	create	.php	files	-	Organise	>
Folder	and	search	options	>	View	and	then	untick	'Hide	extensions	for
known	file	types'.

In	this	file	enter	the	single	line...

			<?php	phpinfo();

And	then,	in	your	browser,	navigate	to	http://localhost/test.php.	You
should	see	a	screen	with	masses	of	information	and	the	PHP	logo	at
the	top.	Check	a	few	lines	down	for	'Loaded	Configuration	File'	and
make	sure	it	says	c:\php\php.ini.

That's	PHP	and	Apache	all	working	:)
	

	

1.3.	Download	and	Install	PHP	Manually
If	you	decide	to	download	PHP	and	install	it	manually,	the	procedures	in	this	section	guide	you	the
following	tasks:

Download	PHP	and	the	WinCache	extension.

Install	PHP	and	WinCache.

http://localhost/test.php

Add	the	PHP	installation	folder	to	the	Path	environment	variable.

Set	up	a	handler	mapping	for	PHP.

Add	default	document	entries	for	PHP.

Test	your	PHP	installation.

To	keep	this	procedure	simple,	install	the	WinCache	extension	but	do	not
configure	it.	You	will	configure	and	test	WinCache	in	Step	2:	Configure
PHP	Settings.
To	download	and	install	PHP	and	WinCache

1.	 Open	your	browser	to	Windows	for	PHP	Download	Page	and	download	the	PHP	non-
thread-safe	zip	package.

2.	 Download	the	WinCache	extension	from	the	List	of	Windows	Extensions	for	PHP.

3.	 Extract	all	files	in	the	PHP	.zip	package	to	a	folder	of	your	choice,	for
example	 C:\PHP\ .

4.	 Extract	the	WinCache	.zip	package	to	the	PHP	extensions	folder	(\ext),	for
example	 C:\PHP\ext .	The	WinCache	.zip	package	contains	one	file
(Php_wincache.dll).

5.	 Open	Control	Panel,	click	System	and	Security,	click	System,	and	then
click	Advanced	system	settings.

6.	 In	the	System	Properties	window,	select	the	Advanced	tab,	and	then
click	Environment	Variables.

7.	 Under	System	variables,	select	Path,	and	then	click	Edit.

8.	 Add	the	path	to	your	PHP	installation	folder	to	the	end	of	the	Variable	value,	for
example	 ;C:\PHP .	Click	OK.

9.	 Open	IIS	Manager,	select	the	hostname	of	your	computer	in	the	Connections	panel,
and	then	double-click	Handler	Mappings.

10.	 In	the	Action	panel,	click	Add	Module	Mapping.

11.	 In	Request	path,	type	*.php.

12.	 From	the	Module	menu,	select	FastCgiModule.

13.	 In	the	Executable	box,	type	the	full	path	to	Php-cgi.exe,	for	example	 C:\PHP\Php-
cgi.exe .

14.	 In	Name,	type	a	name	for	the	module	mapping,	for	example	FastCGI.

15.	 Click	OK.

16.	 Select	the	hostname	of	your	computer	in	the	Connections	panel,	and	double-
click	Default	Document.

https://docs.microsoft.com/en-us/iis/application-frameworks/scenario-build-a-php-website-on-iis/configuring-step-2-configure-php-settings
http://windows.php.net/download/
https://sourceforge.net/projects/wincache/

17.	 In	the	Action	panel,	click	Add.	Type	Index.php	in	the	Name	box,	and	then	click	OK.

18.	 Click	Add	again.	Type	Default.php	in	the	Name	box,	and	then	click	OK.

To	test	your	PHP	installation
1.	 Open	a	text	editor,	for	example	Notepad,	as	Administrator.

2.	 In	a	new	file,	type	the	following	text:	 <?php	phpinfo();	?>

3.	 Save	the	file	as	 C:\inetpub\wwwroot\Phpinfo.php .

4.	 Open	a	browser	and	enter	the	following	URL:
http://localhost/phpinfo.php

A	nicely	formatted	webpage	is	displayed	showing	the	current	PHP
settings.

To	configure	the	WinCache	PHP	extension
1.	 In	Windows	Explorer,	open	your	PHP	installation	folder,	for	example	 C:\PHP .

2.	 Choose	either	the	php.ini	-	development	or	php.ini	-	production	file,	and	rename
it	php.ini.

3.	 In	a	text	editor,	open	the	php.ini	file	and	added	the	following	line	at	the	end	of	the
file:	 extension	=	php_wincache.dll .

4.	 Save	and	close	the	php.ini	file.

5.	 Recycle	the	IIS	Application	Pools	for	PHP	to	pick	up	the	configuration	changes.

	
To	view	WinCache	configuration	and	other	PHP	settings

1.	 Open	a	text	editor.

2.	 In	a	new	file,	type	the	following	text:	 <?php	phpinfo();	?>

3.	 Save	the	file	as	 c:\inetpub\wwwroot\phpinfo.php .

4.	 Open	a	browser	and	enter	the	following	URL:
http://localhost/phpinfo.php

A	nicely	formatted	web	page	is	displayed	showing	the	current	PHP
settings.	The	WinCache	settings	appear	in	a	section
called	wincache.

Warning:	Delete	the	phpinfo.php	file	when	it's	no	longer	needed.
	

	

Unit	V
Introduction:

	

XML,	or	Extensible	Markup	Language,	is	a	markup	language	that	is
used	 to	 create	 our	 own	 tags.	 It	 was	 created	 by	 the	 World	 Wide	 Web
Consortium	 (W3C)	 to	 overcome	 the	 limitations	 of	 HTML,	 the	Hypertext
Markup	Language	is	the	basis	for	all	Web	pages.

	
XML	is	widely	used	 in	 the	era	of	web	development.	 It	 is	also	used	 to	simplify	data
storage	and	data	sharing.
XML	 is	 based	 on	 SGML	 --	 Standard	 Generalized	 Markup
Language.
XML	is	designed	to	store	and	transport	data.

Xml	was	 released	 in	 late	90’s.	 It	was	created	 to	provide	an	easy	 to	use	and	store
self-describing	data.

XML	is	not	a	replacement	for	HTML.

XML	is	designed	to	be	self-descriptive.

XML	is	designed	to	carry	data,	not	to	display	data.

XML	tags	are	not	predefined.	You	must	define	your	own	tags.

XML	is	platform	independent	and	language	independent.

XML	is	a	markup	language	which	is	like	HTML.	XML	and	HTML
both	use	tags.	But	there	are	some	differences	between	them.

HTML	 was	 designed	 for	 how	 to	 display	 data.	 And	 XML
was	designed	for	how	to	store	data.

HTML	 tags	 are	 predefined.	 But	 XML	 tags	 are	 not
predefined.	You	must	define	your	own	tags

With	 XML,	 data	 can	 also	 be	 easily	 exchanged	 between
computer	 and	 database	 systems	 because	 XML	 data	 is
stored	 in	 text	 format,	 this	makes	 it	 easier	 to	export	 data
from	 a	 system	 to	 an	 XML	 file,	 and	 then	 import	 it	 into
another	system.

Creating	XML	Documents
	

An	XML	tag	is	text	that	begins	with	a	<	and	ends	with	a	>.
Data	 is	 placed	 between	 a	 matching	 start	 and	 end	 tags,	 and	 is
called	the	'element	content‘

Syntax:
<tagname>	element	content</tagname>
The	structure	of	xml	tags	is	as	follows:

<root>		
		<child>		
				<subchild>.....</subchild>		
		</child>		
</root>

Example:
<student>

						<rno>123</rno>
						<name>Radha</name>
						<age>20</age>
						<mobilenumber>7777777</mobilenumber>
						<address>
												<hno>7-90-456</hno>
												<city>hyd<city>
												<state>Telangana</state>
						</address>

</student>
Here	student	is	a	root	element.	And	rno,	name,	age,	mobile	number,

address	are	child	elements	of	student	tag.
	

Invalid,	valid	and	well-formed	documents:
There	are	three	kinds	of	XML	documents:
Invalid	 documents	 don't	 follow	 the	 syntax	 rules	 defined	 by	 the	 XML
specification.	If	a	developer	has	defined	rules	for	what	the	document	can
contain	 in	 a	 DTD	 or	 schema,	 and	 the	 document	 doesn't	 follow	 those
rules,	 that	 document	 is	 invalid	 as	 well.	 (See	 Defining	 document
content	 for	 a	 proper	 introduction	 to	 DTDs	 and	 schemas	 for	 XML
documents.)
Valid	documents	follow	both	the	XML	syntax	rules	and	the	rules	defined
in	their	DTD	or	schema.
Well-formed	documents	 follow	 the	XML	syntax	 rules	but	 don't	 have	a
DTD	or	schema.
	

Defining	Data	for	Web	Applications:
We	 have	 seen	 how	 developers	 can	 use	 XML	 to	 create

http://www.ibm.com/developerworks/xml/tutorials/xmlintro/xmlintro.html

documents	with	 self-describing	data,	 lets	 see	how	people	are
using	 those	 documents	 to	 improve	 the	Web.	 Here	 are	 a	 few
key	areas:
XML	 simplifies	 data	 interchange.	 Because	 different
organizations	(or	even	different	parts	of	the	same	organization)
rarely	 standardize	 on	 a	 single	 set	 of	 tools,	 it	 can	 take	 a
significant	 amount	 of	 work	 for	 applications	 to	 communicate.
Using	XML,	each	group	creates	a	single	utility	 that	 transforms
their	internal	data	formats	into	XML	and	vice	versa.	Best	of	all,
there's	 a	 good	 chance	 that	 their	 software	 vendors	 already
provide	 tools	 to	 transform	 their	 database	 records	 (or	 LDAP
directories,	or	purchase	orders,	and	so	forth)	to	and	from	XML.
XML	 enables	 smart	 code.	 Because	 XML	 documents	 can	 be
structured	 to	 identify	 every	 important	 piece	 of	 information	 (as
well	 as	 the	 relationships	 between	 the	 pieces),	 it's	 possible	 to
write	 code	 that	 can	 process	 those	 XML	 documents	 without
human	intervention.	The	fact	that	software	vendors	have	spent
massive	 amounts	 of	 time	 and	 money	 building	 XML
development	 tools	 means	 writing	 that	 code	 is	 a	 relatively
simple	process.
XML	 enables	 smart	 searches.	 Although	 search	 engines	 have
improved	steadily	over	the	years,	 it's	still	quite	common	to	get
erroneous	 results	 from	 a	 search.	 If	 you're	 searching	 HTML
pages	 for	 someone	named	 "Chip,"	 you	might	 also	 find	pages
on	 chocolate	 chips,	 computer	 chips,	 wood	 chips,	 and	 lots	 of
other	 useless	 matches.	 Searching	 XML	 documents	 for	 <first-
name>	elements	that	contained	the	text	Chip	would	give	you	a
much	better	set	of	results.

	

Well-	formed	XML	documents:

XML	document	 is	said	 to	be	a	well	 formed	XML	document,	 if	 it	satisfies
xml	rules	(XML	document	preparation	rules)	and	element	naming	rules.A
"Well	Formed"	Extensible	Markup	Language	document	that	conforms	to	the	XML	syntax	rules.A
"Valid"	 XML	 document	 is	 a	 "Well	 Formed"	 XML	 document	 that	 conforms	 to	 the	 rules	 of	 a
Document	Type	Definition	(DTD).
	
XML	rules:(OR	XML	document	preparation	rules)

A	well-formed	XML	document	must	have	a	corresponding	end	tag
for	all	of	its	start	tags.
A	tag	in	xml	is	called	as	element	and	the	content	of	that	tag	is
called	as	element	content.
XML	documents	must	contain	one	element	that	is	the	parent	of	all
other	elements.	This	element	is	called	the	root	element.
Nesting	of	elements	within	each	other	in	an	XML	document	must
be	proper.	
An	XML	document	can	contain	only	one	root	element.	So,	the	root
element	of	an	xml	document	is	an	element	which	is	present	only
once	in	an	xml	document	and	it	does	not	appear	as	a	child
element	within	any	other	element.
A	XML	document	must	contain	root	tags,	an	element	in	XML	can
has	its	child	element.
XML	tags	are	case	sensitive.
XML	attribute	values	must	be	quoted.
An	element	can	contain	other	elements.	That	is	child	and	sub
child	elements.

	

Elements	in	XML:
XML	elements	can	be	defined	as	building	blocks	of	an	XML.
An	element	can	contain:	text,	attributes,	other	elements	or	a	mix	of	the
above

Each	XML	document	contains	one	or	more	elements,	the	scope	of	which
are	either	delimited	by	start	and	end	tags,	or	for	empty	elements,	by	an
empty-element	tag.

Syntax:
<element-name	attribute1	attribute2>

....content

</element-name>

Where	element-name	is	the	name	of	the	element.	The	name	its	case	in
the	start	and	end	tags	must	match.	Attribute1,	attribute2	are	attributes	of
the	element	separated	by	white	spaces.	An	attribute	defines	a	property
of	 the	element.	 It	associates	a	name	with	a	value,	which	 is	a	string	of
characters.	An	attribute	is	written	as	−name	=	"value"

Eg:	<book	category="web">
				<title>Learning	XML</title>

				<author>Erik	T.	Ray</author>

				<year>2003</year>

				<price>39.95</price>

		</book>

Element	Naming	Rules:
XML	elements	must	follow	these	naming	rules:

Element	Names	can	contain	letters,	numbers,	and	other
characters
Element	Names	cannot	start	with	a	number	or	punctuation
character

Element	Names	cannot	start	with	the	letters	xml	(or	XML,	or
Xml,	etc)

Element	Names	cannot	contain	spaces.

Element	Names	are	case	sensitive.

XML	attributes
An	attributes	in	XML	Stores	additional	information	about	element

Each	attribute	must	have	a	name	and	a	value
To	declare	attribute	in	XML	use	=	operator	vale	must	be
enclosed	in	quotes
Example:

<student		course=“B.Sc”>
						<rno>123</rno>

						<name>Radha</name>
						<age>20</age>
						<mobilenumber>7777777</mobilenumber>
</student>
In	the	above	example	course	is	an	attribute	of	student	element.

	

Comments
XML	uses	exactly	the	same	syntax	as	HTML	for	comments	so
that	any	text	that	is	inserted	between	<!--		and		-->
To	add	comments	in	xml	file	we	will	use	the	following	syntax:

Syntax:
<!-	-	comment	here	-	->

Example:
<!-	-	This	is	my	xml	file	-	->

	

Empty	XML	Elements
Elements	that	do	not	enclose	any	child	elements	or	textual	data
are	called	‘empty	elements’.
Empty	elements	can	have	a	normal	closing	tag,	or	can	use	the
shorthand	method	that	combines	both	tags	by	adding	a	closing
slash	at	the	end	of	the	opening	tag.
The	following	example	demonstrates	both	methods	being	used
to	indicate	the	source	of	the	image	files	in	the	element	photo.
Example	1:	Which	has	a	normal	closing	tag
<student>

												<rno>123<rno>
												<photo	filename=“jsmith.jpg”></photo>
						</student>
												(OR)

Example	2:	closing	slash	at	the	end	of	the	opening	tag
<student>

												<rno>123<rno>
												<photo	filename=“jsmith.jpg”/>
						</student>

	
	

XML	declaration
The	start	of	the	very	first	line	of	every	XML	document	should

contain	the	XML	declaration.
This	identifies	the	document	to	be	a	XML	document	and
defines	the	version	of	XML.
The	XML	declaration	is	stated	in	a	special	tag	starts	<?		and
ends	with	?>.
Inside	the	tag,	the	element	is	named	‘xml’	to	denote	that	it	is	a
part	of	the	XML	specification.
To	define	XML	version	we	will	use	version	attribute	and	that	is
assigned	the	version	number	as	its	value.	The	version	number
is	1.0.	that	is	as	follows,
<?xml	version=“1.0”?>
The	XML	declaration	may	include	an	attribute	called
‘standalone’	to	specify	if	that	document	uses	other	documents.
It	has	two	values	either	‘yes’	or	‘no’.
<?xml	version=“1.0”?			standalone=“yes”>

	

XML	Document	Object	Model	(DOM)
	

The	 Document	 Object	 Model	 (DOM)	 is	 a	 W3C	 standard.	 The
Document	 Object	 Model	 (DOM)	 is	 an	 application	 programming
interface	 (API)	 for	 HTML	 and	 XML	 documents.	 It	 defines	 the
logical	 structure	 of	 documents	 and	 the	 way	 a	 document	 is
accessed	and	manipulated.
The	 DOM	 defines	 a	 standard	 for	 accessing	 and	 manipulating
documents:	 "The	 W3C	 Document	 Object	 Model	 (DOM)	 is	 a
platform	and	language-neutral	interface	that	allows	programs	and
scripts	 to	 dynamically	 access	 and	 update	 the	 content,	 structure,
and	style	of	a	document."
The	 XML	 DOM	 defines	 a	 standard	 way	 for	 accessing	 and
manipulating	XML	documents.	It	presents	an	XML	document	as	a
tree-structure.
We	can	access	all	elements	through	the	DOM	tree.
We	 can	 modify	 or	 delete	 their	 content	 and	 also	 create	 new

elements.	The	elements,	their	content	(text	and	attributes)	are	all
known	as	nodes.
XML	DOM	 is	a	standard	object	model	 for	XML.	XML	documents
have	a	hierarchy	of	informational	units	called	nodes;

Node	 object	 can	 have	 only	 one	 parent	 node	 object.	 This
occupies	the	position	above	all	the	nodes
The	 parent	 node	 can	 have	 multiple	 nodes	 called
as	child	nodes.	These	child	nodes	can	have	additional	node
called	as	attribute	node
These	child	nodes	in	turn	can	have	multiple	child	nodes.	The
text	within	the	nodes	is	called	as	text	node.
The	node	objects	at	the	same	level	are	called	as	siblings.

It	defines	the	objects	and	properties	to	access	all	XML	elements.
The	DOM	is	separated	into	3	different	levels:

Core	DOM	-	standard	model	for	any	structured	document

XML	DOM	-	standard	model	for	XML	documents

HTML	DOM	-	standard	model	for	HTML	documents

	

<Company>

<Employeecategory="technical">

<FirstName>Tanmay</FirstName>

<LastName>Patil</LastName>

<ContactNo>1234567890</ContactNo>

</Employee>

<Employeecategory="non-technical">

<FirstName>Taniya</FirstName>

<LastName>Mishra</LastName>

<ContactNo>1234667898</ContactNo>

</Employee>

</Company>

The	Document	Object	Model	of	the	above	XML	document	is:

	

	
	
	
	
	

	
	
	
	
	
	

Advantages	of
XML	DOM
The	 following

are	the	advantages	of	XML	DOM.

XML	DOM	is	language	and	platform	independent.

XML	 DOM	 is	 traversable	 -	 Information	 in	 XML	 DOM	 is
organized	 in	 a	 hierarchy	 which	 allows	 developer	 to	 navigate
around	the	hierarchy	looking	for	specific	information.

XML	DOM	is	modifiable	-	It	is	dynamic	in	nature	providing	the
developer	a	scope	to	add,	edit,	move	or	remove	nodes	at	any
point	on	the	tree.

Disadvantages	of	XML	DOM
It	 consumes	more	memory	 (if	 the	XML	 structure	 is	 large)	 as
program	written	once	remains	in	memory	all	the	time	until	and
unless	removed	explicitly.

Due	to	the	extensive	usage	of	memory,	its	operational	speed,
compared	to	SAX	is	slower.

	

	

XML	DTD	(Data	Type	Definition):
The	XML	Document	Type	Definition	(DTD)	is	a	way	to	describe
XML	language	precisely.
It	defines	 the	 legal	building	blocks	of	an	XML	document.	 It	 is
used	to	define	document	structure	with	a	list	of	legal	elements
and	attributes.
DTDs	 check	 vocabulary	 and	 validity	 of	 the	 structure	 of	 XML
documents	 against	 grammatical	 rules	 of	 appropriate	 XML
language.
An	XML	DTD	can	be	either	specified	inside	the	document,	or	it
can	be	kept	in	a	separate	document	and	then	liked	separately.
Its	 main	 purpose	 is	 to	 define	 the	 structure	 of	 an	 XML
document.	 It	 contains	 a	 list	 of	 legal	 elements	 and	 define	 the
structure	with	the	help	of	them.
A	 "Valid"	 XML	 document	 is	 a	 "Well	 Formed"	 XML	 document,
which	also	conforms	to	the	rules	of	a	DTD:

DTD	Building	Blocks:
1)	Elements
2)	Attributes
3)	Entities
4)	PCDATA
5)	CDATA
	

1.	 Elements	are	the	main	building	blocks	of	both	XML	and	HTML
documents.
a.	 Eg:							<body>some	text</body>

						<message>some	text</message>
2.	 Attributes	provide	extra	information	about	elements.Attributes	are

always	placed	inside	the	opening	tag	of	an	element.	Attributes
always	come	in	name/value	pairs.	The	following	"img"	element
has	additional	information	about	a	source	file:
a.	

3.	 Entities	are	expanded	when	a	document	is	parsed	by	an	XML
parser.The	following	entities	are	predefined	in	XML:

Entity Character Meaning

< < To	display	less	than	symbol

> > To	display	less	than	symbol

& & To	display		ampersand	character

" " To	display	"	quotation	mark

' ' To	display	'	apostrophe	(single	quote)
	
4.	 PCDATA	means	parsed	character	data.PCDATA	is	text	that	WILL

be	parsed	by	a	parser.	The	text	will	be	examined	by	the	parser	for
entities	and	markup.Tags	inside	the	text	will	be	treated	as	markup
and	entities	will	be	expanded.

5.	 CDATA	means	character	data.CDATA	is	text	that	will	NOT	be
parsed	by	a	parser.	Tags	inside	the	text	will	NOT	be	treated	as
markup	and	entities	will	not	be	expanded.

Types	of	DTD:
There	are	2	different	types	of	DTD

1)	Internal	DTD
2)	External	DTD
	

1)	Internal	DTD:
A	 DTD	 is	 referred	 to	 as	 an	 internal	 DTD	 if	 elements	 are	 declared
within	the	XML	files.	To	refer	it	as	internal	DTD,	standalone	attribute	in
XML	 declaration	 must	 be	 set	 to	 yes.	 This	 means,	 the	 declaration
works	independent	of	an	external	source.

Syntax
<!	DOCTYPE	root-element	[element-declarations]>

Where	 root-element	 is	 the	 name	 of	 root	 element	 and	 element-
declarations	is	where	you	declare	the	elements.

Example:		(XML	document	with	an	internal	DTD)
<?xml	version="1.0"?>
<!DOCTYPE	note	[
<!ELEMENT	note	(to,from,heading,body)>
<!ELEMENT	to	(#PCDATA)>
<!ELEMENT	from	(#PCDATA)>
<!ELEMENT	heading	(#PCDATA)>
<!ELEMENT	body	(#PCDATA)>

]>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>HIIIIIIIIIII</body>
</note>
The	DTD	above	is	interpreted	like	this:

!DOCTYPE	note	defines	that	the	root	element	of	this	document
is	note
!ELEMENT	note	defines	that	the	note	element	must	contain
four	elements:	"to,from,heading,body"
!ELEMENT	to	defines	the	to	element	to	be	of	type	"#PCDATA"
!ELEMENT	from	defines	the	from	element	to	be	of	type
"#PCDATA"
!ELEMENT	heading	defines	the	heading	element	to	be	of	type
"#PCDATA"
!ELEMENT	body	defines	the	body	element	to	be	of	type
"#PCDATA"

2)	External	DTD:
In	external	DTD	elements	are	declared	outside	the	XML	file.	They	are
accessed	by	specifying	the	system	attributes	which	may	be	either	the
legal	 .dtd	 file	 or	 a	 valid	 URL.	 To	 refer	 it	 as	 external
DTD,	standalone	attribute	in	the	XML	declaration	must	be	set	as	no.
This	means,	declaration	includes	information	from	the	external	source.

Syntax
<!DOCTYPE	root-element	SYSTEM	"file-name">

where	file-name	is	the	file	with	.dtd	extension.

Example:
<?xml	version="1.0"?>
<!DOCTYPE	note	SYSTEM	"note.dtd">
<note>
		<to>Tove</to>
		<from>Jani</from>
		<heading>Reminder</heading>

		<body>Don't	forget	me	this	weekend!</body>
</note>
	
The	DTD	file	as	follows	:	(The	file	name	as	note.dtd)
	
<!ELEMENT	note	(to,from,heading,body)>
<!ELEMENT	to	(#PCDATA)>
<!ELEMENT	from	(#PCDATA)>
<!ELEMENT	heading	(#PCDATA)>
<!ELEMENT	body	(#PCDATA)>

	

DTD	Entities
Entities	are	used	to	define	shortcuts	to	special	characters.

These	are	the	place	holders	in	XML.

Entities	can	be	declared	internal	or	external.

Entities	are	expanded	when	a	document	is	parsed	by	an	XML
parser.
Total	5	Character	Entities
The	following	entities	are	predefined	in	XML:
There	 are	 few	 special	 characters	 or	 symbols	 which	 are	 not
available	 to	 be	 typed	 directly	 from	 the	 keyboard.	 Character
Entities	 can	 also	 be	 used	 to	 display	 those	 symbols/special
characters.

There	are	three	types	of	character	entities	−

Predefined	Character	Entities
Numbered	Character	Entities
Named	Character	Entities

The	following	are	few	character	entities:
	

Entity Character Meaning
< < To	display	less	than	symbol

> > To	display	less	than	symbol

& & To	display		ampersand	character

" " To	display	"	quotation	mark

' ' To	display	'	apostrophe	(single	quote)
Example:

<group>MPCS	&	MECS	&	MSCS</group>
Output:

<group>MPCS	&	MECS	&	MSCS</group>
	

XML	Namespaces
	
XML	Namespace	Purpose:
XML	Namespaces	provide	a	method	to	avoid	element	name	conflicts.
	
Name	Conflicts:

In	XML,	element	names	are	defined	by	the	developer.	This	often	results	in
a	conflict	when	trying	to	mix	XML	documents	from	different	XML	applications.
	
Understanding	namespaces	(Example	with	explanation):

This	XML	carries	HTML	table	information	(a	piece	of	table	information):
<table>
								<tr>
																<td>Apples</td>
																<td>Bananas</td>
								</tr>
</table>

This	 XML	 carries	 information	 about	 a	 table	 (a	 piece	 of	 furniture
information):
<table>
								<name>African	Coffee	Table</name>
								<width>80</width>
								<length>120</length>
</table>

If	these	XML	were	added	together,	there	would	be	a	name	conflict.
Both	 contain	 a	 <table>	 element,	 but	 the	 elements	 have	 different
content	and	meaning.
An	XML	application	will	not	know	how	to	handle	these	differences.
To	Solve	the	Name	Conflict	We	have	to	use	namespaces.

Solving	the	Name	Conflict	Using	a	Prefix:
Name	conflicts	in	XML	can	easily	be	avoided	using	a	name	prefix.

This	XML	carries	information	about	an	HTML	table,	and	a	piece	of	furniture:

<h:table>
								<h:tr>
																<h:td>Apples</h:td>
																<h:td>Bananas</h:td>
								</h:tr>
</h:table>
<f:table>
								<f:name>African	Coffee	Table</f:name>
								<f:width>80</f:width>
								<f:length>120</f:length>
</f:table>

In	 the	 example	 above,	 there	will	 be	no	 conflict	 because	 the	 two	<table>
elements	have	different	names.
XML	Namespaces	-	The	xmlns	Attribute:	(or	document	name	spaces)

When	using	prefixes	in	XML	(i.e.	namespace)	for	the	prefix	must	be
defined.
The	namespace	is	defined	by	the	xmlns		attribute	in	the	start	tag	of	an
element.
The	namespace	declaration	has	the	following	syntax.
							xmlns:	prefix="URI"
Example:

<root>
						<h:table	xmlns:h="http://www.w3.org/TR/fruits/">
														<h:tr>
																						<h:td>Apples</h:td>
																						<h:td>Bananas</h:td>
														</h:tr>

</h:table>
						<f:table	xmlns:f="http://www.w3schools.com/furniture/">
														<f:name>African	Coffee	Table</f:name>
														<f:width>80</f:width>
														<f:length>120</f:length>
						</f:table>
</root>

Explanation:
In	the	example	above,	the	xmlns	attribute	in	the	<table>	tag	give	the
h:	and	f:	prefixes	a	qualified	namespace.

When	a	namespace	is	defined	for	an	element,	all	child	elements	with
the	same	prefix	are	associated	with	the	same	namespace.

																								
(OR)

	
We	can	declare	all	the	namespaces	at	one	place	that	is	in	root	element.

<root		xmlns:h="http://www.w3.org/TR/html4/"
												xmlns:f="http://www.w3schools.com/furniture/">
<h:table>
														<h:tr>

																						<h:td>Apples</h:td>
																						<h:td>Bananas</h:td>
														</h:tr>

</h:table>
	
	
<f:table>

							<f:name>African	Coffee	Table</f:name>
								<f:width>80</f:width>

<f:length>120</f:length>
							</f:table>
	

	
	

	Types of internet access
	(Untitled)
	What is HTML?
	(Untitled)

	HTML Tags
	HTML Page Structure: The following is the basic structure of HTML document.
	Step 1: Open Notepad
	Step 2: Write Some HTML code
	Step 3: Save the HTML Page
	Step 4: Execute HTML file / View HTML Page in Your Browser
	Text Abbreviation: You can abbreviate a text by putting it inside opening <abbr> and closing </abbr> tags. If present, the title attribute must contain this full description and nothing else.
	(Untitled)
	Links in HTML
	Images in HTML: Images are used in HTML documents

	HTML Tables
	HTML - Table Spanning Multiple Rows and Cells
	HTML Table Rowspan Attribute:
	HTML Colspan and Rowspan Attributes:

	HTML Table Cell Padding and Spacing
	(Untitled)
	HTML Cellpadding/Cellspacing Code:
	(Untitled)
	(Untitled)
	HTML Cellspacing and Padding:

	(Untitled)
	What is HTML Form
	Text Fields:
	Password Field:
	Radio Buttons:
	Checkboxes:
	Submit Button:
	2) Saves a lot of time - CSS style definitions are saved in external CSS files so it is possible to change the entire website by changing just one file.
	3) Provide more attributes - CSS provides more detailed attributes than plain HTML to define the look and feel of the website.

	Basic Structure of a Style
	Example:
	2) CSS Id Selector: The id selector selects the id attribute of an HTML element to select a specific element. An id is always unique within the page so it is chosen to select a single, unique element. It is written with the hash character (#), followed by the id of the element. Let’s take an example with the id "para1".
	3) CSS Class Selector: The class selector selects HTML elements with a specific class attribute. It is used with a period character. (full stop symbol) followed by the class name.
	4) CSS Universal Selector: The universal selector is used as a wildcard character. It selects all the elements on the pages.
	5) CSS Group Selector: The grouping selector is used to select all the elements with the same style definitions. Grouping selector is used to minimize the code. Commas are used to separate each selector in grouping.
	(Untitled)
	The DIV Element
	Div (short for division) divides the content into individual sections. Each section can then have its own formatting, as specified by the CSS. Div is a block-level container, meaning that there is a line feed after the </div> tag. The DIV element defines logical divisions on your web page. It acts a lot like a P element, by placing newlines or carriage returns before and after the division. A division can have multiple paragraphs in it. The <div> element is a block-level element.
	(Untitled)
	Using the DIV Tag
	To use the DIV element, surround the area of your page that you want as a separate division with the <div> and </div> tags:

	(Untitled)
	Different Font Formats:
	When you purchase web fonts licensing, you receive a package of font files that typically include at least some of the following formats:
	CSS3 Transforms:

	(Untitled)
	Defining transitions
	Alert Dialog Box: An alert dialog box is mostly used to give a warning message to the users. It is used to show a message in the dialog box, and there is an OK button. It is mostly used to prompt message if user missed input value or invalid data in given form or text. When an alert box pops up, the user will have to click "OK" to proceed.
	Here window is optional.
	Eg: 1. alert("I am an alert box!");
	(Untitled)
	Var price=10.00;
	alert("The price is "+price);
	Confirmation Dialog Box:
	if...else if... statement: The if...else if... statement is an advanced form of if…else that allows JavaScript to make a correct decision out of several conditions.
	Syntax: The syntax of an if-else-if statement is as follows –
	if (condition1) { block of code to be executed if condition1 is true} else if (condition2) { block of code to be executed if the condition1 is false and condition2 is true} else { block of code to be executed if the condition1 is false and condition2 is false}
	Eg: if (time < 10) { greeting = "Good morning"; } else if (time < 20) { greeting = "Good day"; } else { greeting = "Good evening"; }

	The break Keyword
	The default Keyword
	The most basic loop in JavaScript is the while loop. The purpose of a while loop is to execute a statement or code block repeatedly as long as an expression is true. Once the expression becomes false, the loop terminates. The syntax is as follows:
	O/P: 11
	12
	13
	14
	15
	2) The Do/While Loop:
	Syntax

	do { code block to be executed}while (condition);
	Eg: <script>
	3) JavaScript For loop:
	Syntax:
	for(variable-name in object)
	{
	Statement or block to execute
	}
	Calling a Function
	Function Parameters
	Function with Return Value: We can call function that returns a value and use it in our program. A JavaScript function can have an optional return statement. This is required if you want to return a value from a function. This statement should be the last statement in a function. Let’s see the example of function that returns value.

	Introduction to browser events
	onclick Event Type:
	Email address validation
	Website URL validation
	Use a Web Host with PHP Support:
	Step 1: Install MySQL
	Step 2: Install Apache
	Step 3: Install PHP
	Step 4: Configure Apache and PHP
	Step 5: Test your install
	(Untitled)
	1.3. Download and Install PHP Manually
	To download and install PHP and WinCache
	To test your PHP installation
	To configure the WinCache PHP extension
	(Untitled)
	To view WinCache configuration and other PHP settings

	(Untitled)
	Empty XML Elements
	Advantages of XML DOM
	Disadvantages of XML DOM
	Syntax
	Syntax

	Solving the Name Conflict Using a Prefix:

